
bsspdfest: A MATLAB toolbox for
nonparametric probability function

estimation using normalized B-splines
Version 3.1.0

A manual prepared by

Biometrics Northwest LLC
6215 225th Avenue NE
Redmond, WA 98053

Email: info@biometricsnw.com

May 15, 2023

License

Copyright © 2014-2023 Biometrics Northwest LLC

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are per-
mitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of condi-
tions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials provided
with the distribution.

3. Neither the name of Biometrics Northwest LLC nor the names of its contributors may
be used to endorse or promote products derived from this software without specific prior
written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBU-
TORS ”AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIEDWARRANTIES OFMERCHANTABILITY AND FIT-
NESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, IN-
DIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CON-
TRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHER-
WISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

i

Abstract

A MATLAB toolbox implementing nonparametric probability density function estimation in
one and several dimensions using normalized B-splines has been developed. The toolbox uses
a series of normalized B-splines in 1-dimension and a series of tensor products of normalized
B-splines for multiple dimensions to estimate the probability functions. (Gehringer, 1990,
Gehringer and Redner, 1992, Redner and Gehringer, 1994, Redner, 1999, 2000).

The toolbox supports separate estimation and evaluation of the probability density func-
tion, the cumulative distribution function, the inverse cumulative distribution function, the
survivor function, and the cumulative hazard function for one-dimensional data. For data
having two or more dimensions the toolbox supports separate estimation and evaluation
of the probability density function, the cumulative distribution function, and the survivor
function. The estimation and evaluation operations are separate to support situations where
a single estimation step is performed but a large number of evaluations is desired; there
is no need to perform the estimation step on each evaluation of a probability function. In
addition, a linear interpolant may be created for the probability density function and the cu-
mulative distribution function to provide very fast approximate evaluation of the probability
functions.

ii

Contents

License i

Abstract ii

List of Tables v

List of Figures viii

1 Introduction 1

1.1 What’s New . 2

2 Using the bsspdfest toolbox 7

2.1 Installing bsspdfest . 7

2.2 Using bsspdfest . 8

2.3 bsspdfest toolbox functions . 10

2.3.1 Probability density function estimation and evaluation 10

2.3.2 Example scripts and supporting functions 13

2.4 Errors and error messages . 14

2.5 Bug reporting . 15

3 Examples 16

iii

CONTENTS iv

3.1 One-dimensional examples . 17

3.1.1 Standard normal distribution . 17

3.1.2 Mixture of 2 normal distributions . 25

3.2 Two-dimensional examples . 39

3.2.1 Standard normal distribution . 39

3.2.2 Mixture of 5 2-dimensional normal distributions 50

3.3 Three-dimensional examples . 57

3.3.1 Standard normal distribution . 57

3.3.2 Mixture of 5 3-dimensional normal distributions 69

3.4 Bounded domain examples . 73

3.4.1 One-dimensional bounded domains 74

3.4.2 Two-dimensional bounded domains 82

3.5 Efficient use of B-spline series estimators . 96

List of Tables

3.1 Summary of PDF estimation results for all examples 17

3.2 Times to estimate a one dimensional standard normal PDF 98

3.3 Times to estimate a two dimensional standard normal PDF 98

3.4 Times to estimate a three dimensional standard normal PDF 98

v

List of Figures

2.1 A simple example using the bsspdfest toolbox 9

3.1 1-D standard normal PDF, n = 1000 . 19

3.2 1-D standard normal CDFs, n = 1000 . 20

3.3 1-D standard normal survivor function, n = 1000 21

3.4 1-D standard normal cumulative hazard function, n = 1000 22

3.5 1-D standard normal ICDF, n = 1000 . 24

3.6 1-D mixture distribution using n = 1500 points 26

3.7 1-D mixture CDFs, n = 1500 . 27

3.8 1-D mixture survivor function, n = 1500 . 28

3.9 1-D mixture cumulative hazard function, n = 1500 30

3.10 1-D standard normal ICDF, n = 1500 . 31

3.11 1-D mixture distribution using n = 7500 points 33

3.12 1-D mixture CDFs, n = 7500 . 34

3.13 1-D mixture survivor function, n = 7500 . 35

3.14 1-D mixture cumulative hazard function, n = 7500 36

3.15 1-D standard normal ICDF, n = 7500 . 38

3.16 2-D standard normal distribution data, n = 5000 40

vi

LIST OF FIGURES vii

3.17 2-D standard normal PDF estimated using n = 5000 points 41

3.18 2-D standard normal CDFs estimated using n = 5000 points 43

3.19 2-D standard normal survivor function estimated using n = 5000 points . . . 44

3.20 2-D standard normal distribution data, n = 10000 45

3.21 2-D standard normal PDF estimated using n = 10000 points 47

3.22 2-D standard normal CDFs estimated using n = 10000 points 48

3.23 2-D standard normal survivor function estimated using n = 10000 points . . 49

3.24 2-D mixture distribution data, n = 50000 . 51

3.25 2-D mixture mixture distribution PDF, n = 50000 53

3.26 2-D mixture mixture distribution CDFs, n = 50000 54

3.27 2-D mixture mixture distribution survivor function, n = 50000 56

3.28 3-D standard normal distribution data, n = 25000 58

3.29 3-D standard normal distribution, dimensions 1 and 2, n = 25000 59

3.30 3-D standard normal distribution, dimensions 1 and 3, n = 25000 60

3.31 3-D standard normal distribution, dimensions 2 and 3, n = 25000 61

3.32 3-D standard normal CDFs, dimensions 1 and 2, n = 25000 63

3.33 3-D standard normal CDFs, dimensions 1 and 3, n = 25000 64

3.34 3-D standard normal CDFs, dimensions 2 and 3, n = 25000 65

3.35 3-D standard normal survivor function, dimensions 1 and 2, n = 25000 . . . 66

3.36 3-D standard normal survivor function, dimensions 1 and 3, n = 25000 . . . 67

3.37 3-D standard normal survivor function, dimensions 2 and 3, n = 25000 . . . 68

3.38 3-D mixture distribution data, n = 25000 . 71

3.39 3-D mixture distribution data plotmatrix . 72

3.40 1-D uniform PDF, n = 100000 . 75

3.41 1-D uniform PDF, n = 100000, m = 1 . 77

LIST OF FIGURES viii

3.42 1-D exponential PDF with mean µ = 2, n = 100000 79

3.43 1-D truncated normal PDF n = 91113 . 81

3.44 2-D uniform distribution data, n = 200000 83

3.45 2-D uniform PDF, bounded estimate using n = 200000 points 85

3.46 2-D uniform PDF, unbounded estimate using n = 200000 points 86

3.47 2-D truncated normal distribution data, n = 174221 88

3.48 2-D truncated normal PDF, bounded estimate using n = 174221 points . . . 90

3.49 2-D truncated normal PDF, unbounded estimate using n = 174221 points . . 91

3.50 1-D truncated normal PDF, bounded comparison, default partition 94

3.51 [1-D truncated normal PDF, bounded comparison, custom partition 95

3.52 Estimated 2-D standard normal distribution (B-spline) 99

3.53 Estimated 2-D standard normal distribution (gridded interpolant) 100

3.54 Difference between the B-spline series and gridded interpolant estimates . . . 101

Chapter 1

Introduction

The bsspdfest toolbox implements 1-, 2-, 3-, and N-dimensional nonparametric probability
density function (PDF) estimation procedures using a B-spline series for one-dimensional
data and a tensor product B-spline series for multi-dimensional data (Gehringer, 1990,
Gehringer and Redner, 1992, Redner and Gehringer, 1994, Redner, 1999, 2000). The 1-,
2-, and 3-dimensional specific functions take advantage of the direct addressing of MATLAB
arrays and various vectorization approaches to speed up the computations. Two functions,
one for estimation (bsspdfest) and one for evaluation (bsseval), of a B-spline series rep-
resentation for a PDF are provided. In addition, the bsseval function supports evaluation
of the CDFs and survivor functions for all dimensions as well as the inverse cumulative
distribution function (ICDF) and the cumulative hazard function for one dimensional data.

This User’s Guide serves two purposes. First, it describes the use of the bsspdfest

MATLAB toolbox implementing nonparametric probability density function estimation pro-
cedures for one and several dimensions. Second, it provides a demonstration of the correct
usage of the toolbox through its use in a variety of examples. The data sets used in the ex-
amples are simulated and the code necessary to generate them is provided with the toolbox.

How to install and use the bsspdfest toolbox, its functions, and their inputs and outputs
are described in Chapter 2. Examples demonstrating the use of the bsspdfest toolbox are
provided in Chapter 3. Changes and improvements to the bsspdfest package are briefly
described next in Section 1.1.

1

CHAPTER 1. INTRODUCTION 2

1.1 What’s New

Version 2.4.0 and later

See the file changes.txt.

Version 2.3.1

� Fixed a typo that was not caught in other testing for some reason. Should have done
one more test after packaging.

Version 2.3.0

� Changed the method for dealing with boundary corrections from using the histogram
value to reflection through any active boundaries. In addition, for 2- and 3-dimensional
data the reflections are also performed for corners and edges where multiple active
boundaries intersect.

� Added boundary corrections for N-dimensional data via reflection through the active
boundaries. No additional corrections are made for multiple intersecting active bound-
aries.

� Fixed an off by 1 error in bsspdfestnd(). The error produced linear index values that
were out of bounds when performing computations with an active boundary. When
there was no active boundary this error would have caused a shift in the coefficients
for each dimension since the number of partition points was used not the number of
partition intervals.

� Fixed a bug in the extrapolation of the values for the 3-dimensional CDF in do cdf.
There was an incorrect test that caused the extrapolated values to be zero in one of
several extrapolation cases.

� Changed calls to repmat() to calls to bsxfun() to improve performance and reduce
memory requirements for intermediate results.

CHAPTER 1. INTRODUCTION 3

� Changed the way the coefficient matrix was updated from a point by point summation
to a chunked summation based on a sorted list of the unique indices into the coeffi-
cient matrix. This provided a significant speed improvement for 2- and 3-dimensional
estimation functions.

� Rearranged the computations for the 2- and 3-dimensional estimation functions to
further improve performance.

� Moved the bssdeleteinterpolant() function out of the private folder so that it could be
used.

� Cleaned up the comments for several functions and fixed typos in several error mes-
sages.

� Fixed a bug in bsscreatestruct() where an unassigned variable was passed to bsscheck-
memory(). The variable name used was ’ngrid’ which is now a MATLAB function.

� Changed the variable name ’ngrid’ in bsscreateinterpolant to ’tmpngrid’ to avoid any
potential problems with the MATLAB function ngrid.

� Added tests to see if the storage requirements were less than intmax(’uint32’) bytes.
If so, everything is assumed to be OK and bsscheckmemory() just returns. Otherwise
check the memory. The call to memory() was taking a huge amount of time.

� Added a new private function bssuniqueidx() to compute the unique index values,
break points, and an order vector.

� Updated the User’s Guide for the new boundary correction method, fixed typos, mis-
spellings, etc. Several new examples were also added.

Version 2.2.0

� Updated the Users Guide to add an examples section demonstrating the estimation for
bounded domains. Removed the N-dimensional examples; it is essentially identical to
the 3-d example.

� Added a check for active bounds on the estimation interval. This is detected by check-
ing to see if any of the B-spline series coefficients that overlap a boundary are greater
than zero. If so, a histogram estimate is generated for the bin(s) adjacent to the bound-
ary and used to specify the PDF value at the boundary. The B-spline series coefficients
are then modified to produce this value at the boundary.

CHAPTER 1. INTRODUCTION 4

� Data points that are not in the estimation interval are now ignored. Previously they
were evaluated, but always returned zero values, that would stack up on the bound-
aries. This caused several unnecessary complications when computing boundary values,
leading to the change in behavior.

� Changed values of the multipliers in the bsspartitionsize() function that computes the
default partition sizes to improve the visual smoothness of continuous distributions
slightly. There are still too many partition intervals, but erring on the side of under-
smoothing is the right way to go.

� If the number of inbounds points to one of the bsseval*() functions was zero an error
occurred. The output values should all have had a value of zero. If all points are out
of bounds zero values are returned.

Version 2.1.1

� Fixed a bug when checking the B-spline order. The bsspartitionsizeok() function was
called with the partition size by mistake. It should have been the bssorderok() function
with the B-spline order.

� Fixed a bug that occurred when a single 1-dimensional evaluation point was given to
bsseval and the B-spline series order was greater than one. This caused a row vector
of index values to be used to index a column vector producing a column vector, not a
row vector, due to the 1-dimensional indexing semantics of MATLAB.

� Consolidated the input checking for all of the bsspdfest functions.

� Removed the 3-dimensional mixture distribution movie files to reduce the overall pack-
age size. The movies may be found at the following web page Mixture density 3-
dimensional visualizations.

Version 2.1.0

� Updated the User’s Guide to reflect changes in the testing and example scripts and
their versions that do not use the MATLAB Statistics and Machine Learning Toolbox.

� Added a new test script test bsspdfest nostats. This script is identical to the test
script test bsspdfest except for not requiring the MATLAB Statistics and Machine
Learning Toolbox.

http://www.biometricsnw.com/projects/bssest/bssest.htm
http://www.biometricsnw.com/projects/bssest/bssest.htm

CHAPTER 1. INTRODUCTION 5

� Added two support functions normpdftestbss and mvnpdftestbss for the nostats

version the test script. The functions are simple implementations the evaluate the
normal PDF and multivariate normal PDF for testing the bsspdfest toolbox.

� Deleted references to the example script mk example figs nostats from the User’s
Guide. This file is no longer provided with the bsspdfest Toolbox.

Version 2.0.0

� Algorithmic improvements were made to enhance the performance of the bsspdfest

Toolbox.

� Replaced outer products with vectors of ones used to replicate data with calls to
REPMAT. Since REPMAT is now a built-in function it is significantly faster than
using the outer product to do replication.

� Removed unnecessary reshaping for B-splines of order 1.

� Changed the matrix orientation from m by n to n by m, where m is the B-spline order
and n is the total number of evaluation points specified by the input X. This removed
several transposes of potentially large matrices.

� Removed unnecessary temporary variables.

� Explicitly created indexes and B-spline evaluation matrices for each dimension in the
2-D and 3-D specific functions eliminating looping over the number of dimensions.

� Added the ability to compute probability based functions in addition to the PDF:
the CDFs and survivor functions in all dimensions as well as the inverse CDFs and
cumulative hazard function in one dimension.

� The ability to generate a gridded interpolant for linear interpolation and extrapolation
of the PDF and CDFs has also been added. When the underlying probability functions
are to be estimated once and evaluated many times the gridded interpolant can be
significantly faster than the B-spline evaluation procedures for B-spline orders greater
than 1.

� For the 1-D estimation, sorted the partition indexes derived from the input data,
computing a permutation vector to the data and partition break points to speed up
the computations. This replaced using a logical index of values that was computed for
each partition sequentially to identify the data points it contained.

CHAPTER 1. INTRODUCTION 6

� Added a private folder to isolate the supporting functions from the two main functions
bsspdfest and bsseval.

Version 1.1.0

Fixed an issue with the license file. No other changes.

Version 1.0.0

The initial release of the bsspdfest package.

Chapter 2

Using the bsspdfest toolbox

This chapter describes how to install and use the bsspdfest MATLAB toolbox. The MAT-
LAB functions and their arguments are described, as well as test scripts and a script that
was used to generate the figures in this user manual.

2.1 Installing bsspdfest

To install the bsspdfest toolbox, uncompress the file bsspdfest.zip into a folder called
bsspdfest in the local MATLAB toolbox folder and add this folder to the MATLAB path.
Type ’test bsspdfest’ at the MATLAB prompt to then test the bsspdfest toolbox.

Two versions of the test script are included with the toolbox: a version that is indepen-
dent of the MATLAB Statistics and Machine Learning Toolbox having a file name ending
in nostats, and a version that uses the functions normpdf, normcdf, mvnpdf, mvncdf,
and cholcov from the MATLAB Statistics and Machine Learning Toolbox. The nostats

version of the test script use simple implementations of functions that evaluate the normal
PDF and multivariate normal PDF for testing the bsspdfest toolbox, normpdftestbss and
mvnpdftestbss, and the Cholesky function chol.

7

CHAPTER 2. USING THE BSSPDFEST TOOLBOX 8

2.2 Using bsspdfest

Using the bsspdfest toolbox to estimate a PDF from data and evaluate it for a set of
points consists of two steps. The first step is the estimation step that creates a B-spline
series data structure representing the nonparametric probability density function from a
data matrix whose rows represent the data points. This step is accomplished by using the
function bsspdfest. The second step uses a B-spline series data structure created in an
estimation step with a set of evaluation points, again as rows in a matrix, to evaluate the
PDF using bsseval. As a simple example, the following MATLAB code generates 1000 data
points from a 2-dimensional standard normal distribution, estimates the PDF from the data,
evaluates the estimated function at the data points, and plots the likelihood values for each
data point as Figure 2.1.

% Generate data from a 2-D standard normal distribution

data = randn(1000,2);

% Estimate a pdf from data

bss1 = bsspdfest(data);

% Evaluate the estimated PDF at the data points to get

% their likelihood values

lh = bsseval(data,bss1);

% Plot the likelihood values in 3-D to show the

% approximation to the PDF.

figure;

plot3(data(:,1),data(:,2),lh,’+’);

grid

xlabel(’X1’)

ylabel(’X2’)

zlabel(’Likelihood’)

CHAPTER 2. USING THE BSSPDFEST TOOLBOX 9

Figure 2.1: A simple example using the bsspdfest toolbox to estimate a 2-dimensional
standard normal distribution and plot likelihood values for the data points.

CHAPTER 2. USING THE BSSPDFEST TOOLBOX 10

2.3 bsspdfest toolbox functions

The MATLAB functions implementing the bsspdfest toolbox, their inputs, and their out-
puts are now described. The functions used to estimate and evaluate a B-spline series repre-
sentation of a PDF are described in Section 2.3.1 and the scripts used to generate example
figures using the bsspdfest toolbox are described in Section 2.3.2.

2.3.1 Probability density function estimation and evaluation

A nonparametric estimate of a PDF is computed from data using the function bsspdfest.

bss = bsspdfest(x, bnds, n, m, bss) Estimate a probability density function using a
B-spline series.

INPUTS:

x The data to be used for the B-spline density estimation. This must be a column
oriented array with each row representing a data point, X(NDATA,NDIM) in size.
Values of X outside the estimation bounds are ignored.

bnds The lower and upper bounds of the estimation interval for each dimension. This
is an NDIM by 2 matrix, specifying the minimum and maximum values used to
create the B-spline series partition for each dimension. If empty or not present,
the estimation bounds are generated from the data.

If any of the bounds are active, a boundary correction is made using reflection
through each active boundary. For 2- and 3-dimensional data reflection based
corrections are also made for corners and edges where multiple boundaries are
active.

n The nominal partition size or the number of subintervals to use for the partition
in each dimension. The partition size for each dimension does NOT include the
extra subintervals that are created based on the order of the B-splines that are
used. This is a row or column vector with NDIM elements. NDIM must be ≥ 1.
If empty or not present, a default value based on the number of data points is
used for each dimension.

m The order of the B-spline basis functions to be used. This must be an integer scalar
value greater than or equal to one (M ≥ 1). If not present or empty a default
value of m = 4 is used to generate a cubic approximation.

CHAPTER 2. USING THE BSSPDFEST TOOLBOX 11

bss An existing B-spline series structure that is to have more data points added to
it. This allows one to build a B-spline density estimate a little bit at a time. If
this argument exists, then BNDS, N, and M are ignored and the values in BSS
are used. Empty values [] should be used as place holders for BNDS, N, and M
when BSS is used.

OUTPUTS:

bss A B-spline series data structure with the following fields.

m The order of the B-spline basis functions. This is a scalar value that is the
same for all dimensions.

ndim The number of dimensions for the B-spline series.

npts The number of data points used to compute the coefficients.

bnds The estimation bounds for each dimension. The endpoints do not take into
account the extra partition subintervals that are necessary if the B-spline
order is greater than one.

partition The partition structure containing fields X, N, NPART, and H. The
fields represent the partition of the estimation interval for each dimension,
with X defining the boundary points for the partition subintervals, N defining
the nominal partition size, NPART defining the number of boundary points
including any extra boundary points needed for M > 1, and H defining the
width of the subintervals for each dimension.

c The coefficient matrix for the B-spline series

The function bsseval is used to evaluate a B-spline series representation of a function
using a B-spline series data structure obtained from bsspdfest. The only function type cur-
rently supported is a nonparametric estimate of a PDF and associated probability functions
including: the CDFs and survivor functions for all dimensions and the ICDF and the cumu-
lative hazard function for one dimensional data. Extensions to permit the nonparametric
estimation of arbitrary functions are planned for a future version.

[y,bssout] = bsseval(x,bss,evalfun,zerotol) Evaluate a B-spline series.

INPUTS:

x The data to be used for evaluating the B-spline series. This is an NPOINTS by
NDIM matrix with the rows representing the points. This value may be empty

CHAPTER 2. USING THE BSSPDFEST TOOLBOX 12

if a gridded interpolant is being created. In this situation the output Y will be
assigned an empty value. This feature allows the creation of a gridded interpolant
without the need to evaluate it.

bss The B-spline series data structure containing the series to be used for evaluation.

evalfun The function that is to be evaluated.

If the B-spline series represents a probability density function, the following output
functions are available ’pdf’, ’cdf’, ’icdf’, ’survivor’, ’cumhazard’. If no evaluation
function is specified the B-spline series is simply evaluated without transforma-
tions. An evaluation function value of ’bss’ (default) is also allowed, and indicates
that the B-spline series is simply to be evaluated. If the B-spline series represents
a PDF then using ’bss’ is equivalent to using ’pdf’.

Allowed evaluation functions are:

bss Evaluate the B-spline series (default).

pdf Evaluate the probability density function, f(x).

cdf Evaluate the cumulative distribution function, F (x).

icdf Evaluate the inverse cumulative distribution function, F−1(p).

survivor Evaluate the survivor function, S(x) = 1− F (x).

cumhazard Evaluate the cumulative hazard function, − log(1−F (x)) or equiv-
alently − log(S(x)).

The evalution functions ’icdf’ and ’cumhazard’ are only available for 1-dimensional
distributions. The ’pdf’,’cdf’, and ’survivor’ functions are available for all dimen-
sions.

If the B-spline series does not represent a probability density function, then the
output values cannot be interpreted as being from one of the probability based
functions.

zerotol A zero tolerance for finding flat spots in the CDFs when computing the ICDF.
It is also used to determine a minimal support interval for the CDFs for interpola-
tion of the ICDF. If a value is not supplied a default value of sqrt(eps) is used. A
value of zero is not recommended. A nearly exact zero tolerance may be specified
by using the string value ’exact’, indicating that a zero tolerance of 2048*eps will
be used. The string value ’default’ will use the default value of sqrt(eps). Large
values of the zero tolerance may give inaccurate or incorrect results.

The zero tolerance is only used for the 1-dimensional ’icdf’ evaluation function.

OUTPUTS:

CHAPTER 2. USING THE BSSPDFEST TOOLBOX 13

y The values for the B-spline series evaluated at the points defined by X.

bssout If present, this output argument causes a gridded interpolant to be produced
and stored in the output B-spline series data structure. The gridded interpolant
may be used for fast approximate evaluation of the function represented by the
B-spline series.

Three gridded interpolant functions are allowed depending on the evaluation func-
tion:

bss The B-spline series. This is the default if no evaluation function is specified.

pdf The probability density function.

cdf The cumulative distribution function.

Using any other evaluation function with this output argument present is an error.

2.3.2 Example scripts and supporting functions

Brief descriptions of the example script, the test scripts, and supporting functions are pro-
vided below.

test bsspdfest Test script for the bsspdfest toolbox that uses the functions normpdf,
normcdf, mvnpdf, mvncdf, and cholcov from the MATLAB Statistics and Machine
Learning Toolbox.

test bsspdfest nostats Test script for the bsspdfest toolbox that does not use uses
the functions normpdf, normcdf, mvnpdf, mvncdf, and cholcov from the MATLAB
Statistics and Machine Learning Toolbox.

mk example figs.m Script used to generate the example figures in this document. This
script requires the Statistics and Machine Learning Toolbox due to its use of the
functions normpdf, normcdf, mvnpdf, mvncdf, and cholcov.

y = normpdftestbss(x,mu,sigma) Evaluate the one-dimensional normal distribution at
the values in X using mean MU and standard deviation SIGMA. This function is used
in the example script ending in nostats to eliminate the dependency on the Statistics
Toolbox functions normpdf and normcdf. This function does no error checking.

INPUTS:

x A column vector of points at which to evaluate the one-dimensional normal PDF.

CHAPTER 2. USING THE BSSPDFEST TOOLBOX 14

mu The mean value for the one-dimensional normal distribution. If not present a
value of zero (0) is used.

sigma The standard deviation for the one-dimensional normal distribution. If not
present a value of one (1) is used.

OUTPUTS:

y The values of the one-dimensional normal distribution evaluated at the points in X.

y = mvnpdftestbss(x,mu,sigma) Evaluate the multivariate normal distribution at the val-
ues in X using mean vector MU and covariance matrix SIGMA. This function is used
in the test scripts ending in nostats to eliminate the dependency on the Statistics
Toolbox functions mvnpdf and mvncdf. This function does no error checking.

INPUTS:

x The points at which the multivariate normal distribution PDF is to be evaluated.
This is an NPOINTS by NDIM matrix with the rows representing the points.

mu The mean vector for the multivariate normal distribution. If not present the
NDIM-dimensional zero vector is used.

sigma The covariance matrix for the multivariate normal distribution. If not present
an NDIM by NDIM matrix with ones along the diagonal is used.

OUTPUTS:

y The values of the multivariate normal distribution evaluated at the points in X.

2.4 Errors and error messages

The bsspdfest toolbox functions detect a variety of potential problems, reporting any errors
that are detected using the MATLAB error function. All errors that are detected by the
bsspdfest toolbox are considered to be fatal errors, that is, they halt execution. If an
error occurs, an error message is generated and displayed in the MATLAB window. The
bsspdfest toolbox functions also produce several warning messages using the MATLAB
warning function to provide feedback in situations that may produce questionable results.

CHAPTER 2. USING THE BSSPDFEST TOOLBOX 15

2.5 Bug reporting

In the event that a bug is discovered when using the bsspdfest toolbox, a problem or bug
report may be sent to bugs@biometricsnw.com with a complete description of the problem.
Before sending the bug or problem report, please use the following short check-list to help
prepare the bug or problem report. This will enable a more rapid resolution of the problem.

1. Be sure that the problem to be reported is real and not simply an erroneous input
value or some other simple problem that is not actually a bug or defect in the software.

2. Attempt to fully and concisely document the circumstances under which the problem
occurred. Be sure to include the following items in any message reporting a possible
bug.

� Your name and contact information, email address or phone number in particular.

� The name and version of the software that was used.

� The specific commands that were used.

� All input or output files that were used when the problem occurred.

� Error messages, if any, reported by the software or MATLAB when the problem
occurred.

3. The subject line of the email should clearly indicate that the message is a bug report
or problem report for the bsspdfest MATLAB toolbox.

Contact Biometrics Northwest LLC at the address below to request additional informa-
tion or to report problems and potential bugs.

Biometrics Northwest LLC
6215 225th Avenue NE
Redmond, WA 98053

email:
Bug reports: bugs@biometricsnw.com
Information requests: info@biometricsnw.com

Home Page: http://www.biometricsnw.com

Chapter 3

Examples

The bsspdfest toolbox is demonstrated in this chapter for a variety of probability distribu-
tions in one and several dimensions. For each example the area or volume under the PDF
is computed for the estimated PDF to verify that it is a probability density function, up to
round-off error. Differences between a true PDF and an estimated PDF are characterized
using the integrated absolute error (IAE), the root mean squared error (RMSE), and the
integrated RMSE (IRMSE). A summary of these basic goodness of fit results is provided at
the end of the examples in Table 3.1. In addition to the PDF, the other available probability
functions will also be demonstrated for each dimension. Aside from specifying the probabil-
ity function to evaluate, default values for bsspdfest and bsseval parameters were used in
all examples, except where indicated.

In probability density estimation problems the dimensionality of the problem is deter-
mined by the domain of the function, as represented by the data, rather than the combined
dimensionality of the range and the domain. So, a one-dimensional PDF estimation problem
produces a function in two-dimensions, a two-dimensional problem produces a function in
three-dimensions, or a surface, etc. Examples for 1-dimensional problems are presented in
Section 3.1, and examples for 2-dimensional and 3-dimensional problems, respectively, in
Section 3.2 and Section 3.3. Examples with bounded domains are presented in Section 3.4.
Finally, examples using a gridded interpolant for execution speed are presented in Section 3.5.
For each example, the MATLAB code used to generate the simulated data sets, the evalua-
tion points, and to perform the probability function estimation and evaluation is included,
except for the code used to generate figures. The code for figures was not included to save
space, but it may be found in the file mk example figs.m that generates all of the figures
found here, as well as several others.

16

CHAPTER 3. EXAMPLES 17

Table 3.1: Summary of PDF estimation results for all examples. D is the data dimension,
Ndata is the number of sample points, Neval is the number of evaluation points. Areas and
volumes were computed using a straightforward numerical integration approach: summing
the PDF values and multiplying by the evaluation point spacing in one dimension and the
product of the spacings for multiple dimensions.
Distribution D Ndata Neval Area/Vol. IAE RMSE IRMSE
N(0, 1) 1 1000 501 1.000000 0.078149 0.010806 0.035875
1
3N(0, 0.25) + 2

3N(3, 0.5) 1 1500 501 1.000000 0.217739 0.043800 0.124010
1
3N(0, 0.25) + 2

3N(3, 0.5) 1 7500 501 1.000000 0.088370 0.020792 0.058867
N(0, I) 2 5000 6561 1.000001 0.100253 0.021521 0.026632
N(0, I) 2 10000 6561 0.999999 0.054992 0.012874 0.015932
1
5

∑5
i=1N(µi,Σi) 2 50000 6561 0.999992 0.080439 0.010549 0.016444

N(0, I) 3 25000 1771561 1.000000 0.084037 0.037176 0.011349
1
5

∑5
i=1N(µi,Σi) 3 25000 3442951 0.999996 0.149321 0.018328 0.010965

1
5

∑5
i=1N(µi,Σi) 3 50000 3442951 0.999992 0.132899 0.016711 0.009998

N(0, I) 4 100000 6765201 0.999997 0.061645 0.010933 0.003779

The number of B-spline basis functions that should be used is a function of both the sup-
port or truncated support in the domain for the underlying true distribution, as represented
by the extent of the data, and the desired evaluation region, or domain, for the estimated
PDF. For a histogram, a B-spline of order m = 1, the optimal number of basis functions or
bins is proportional to the cube root of the number of data points, n

1
3 , and twice this value,

rounded to the nearest integer, for each dimension typically provides a good starting point
in practice. Some adjustment of the partition size is to be expected to obtain the desired
smoothness of the result. In addition, for bounded domains the partition size may need to
be smaller than the default size, making the partition subintervals larger, for the boundary
corrections to be effective. An example demonstrating this may be found in Section 3.4.2.

3.1 One-dimensional examples

3.1.1 Standard normal distribution

For the first example, n = 1000 data points are generated from a standard normal distribu-
tion N(0, 1) and used to compute estimates of the available probability functions: the PDF,
the CDFs, the survivor function, the ICDF, and the cumulative hazard function. For each

CHAPTER 3. EXAMPLES 18

function the MATLAB code used to generate the data and perform the probability function
estimation is provided. The evaluation points and the PDF estimate bss1test are used
for each of the probability functions. Results are plotted for each function comparing the
estimated function to the actual function along with the estimation error.

Generate the data and evaluation points.

nsample = 1000;

evalbnds = [-6 6];

xx1 = linspace(evalbnds(1),evalbnds(2),501)’;

xtest1 = randn(nsample,1);

Compute the PDF estimate, evaluate it, and compute the true standard normal PDF.

bss1test = bsspdfest(xtest1);

y1 = bsseval(xx1,bss1test,’pdf’);

yn = normpdf(xx1,0,1);

Evaluate the CDFsand compute the true standard normal CDFs.

y1 = bsseval(xx1,bss1test,’cdf’);

yn = normcdf(xx1,0,1);

Evaluate the survivor function and compute the true standard normal survivor function.

y1 = bsseval(xx1,bss1test,’survivor’);

yn = 1-normcdf(xx1,0,1);

Evaluate the cumulative hazard function and compute the true standard normal cumulative
hazard function.

y1 = bsseval(xx1,bss1test,’cumhazard’);

yn = 1-normcdf(xx1,0,1);

ynch = 1-normcdf(xx1,0,1);

gt0 = yn>0;

yn(~gt0) = nan;

yn(gt0) = -log(yn(gt0));

CHAPTER 3. EXAMPLES 19

Figure 3.1: Estimate of a 1-dimensional standard normal distribution using n = 1000
points. Estimated and true PDF (top) and error (bottom).

CHAPTER 3. EXAMPLES 20

Figure 3.2: Estimate of a 1-dimensional standard normal cumulative distribution function
using n = 1000 points. Estimated and true CDFs (top) and error (bottom).

CHAPTER 3. EXAMPLES 21

Figure 3.3: Estimate of a 1-dimensional standard normal survivor function using n = 1000
points. Estimated and true survivor functions (top) and error (bottom).

CHAPTER 3. EXAMPLES 22

Figure 3.4: Estimate of a 1-dimensional cumulative hazard function using n = 1000 points.
Estimated and true cumulative hazard functions (top) and error (bottom).

CHAPTER 3. EXAMPLES 23

Evaluate the ICDFand compute the true standard normal ICDF.

xx1p = linspace(0,1,501)’;

y1 = bsseval(xx1p,bss1test,’icdf’);

yn = 1-normcdf(xx1,0,1);

ynch = 1-norminv(xx1p,0,1);

CHAPTER 3. EXAMPLES 24

Figure 3.5: Estimate of a 1-dimensional standard normal ICDFusing n = 1000 points.
Estimated and true ICDF(top) and error (bottom).

CHAPTER 3. EXAMPLES 25

3.1.2 Mixture of 2 normal distributions

For this example, n = 1500 data points are generated from an unequal mixture of two normal
distribution 1

3
N(0, 0.25)+ 2

3
N(3, 0.5) and used compute estimates of the available probability

functions: the PDF, the CDFs, the survivor function, the ICDF, and the cumulative hazard
function. For each function the MATLAB code used to generate the data and perform the
probability function estimation is provided. The evaluation points and the PDF estimate
bss1test are used for each of the probability functions. Results are plotted for each function
comparing the estimated function to the actual function with the estimation error.

Generate the data and evaluation points.

nsample = 500;

ndata = 3*nsample;

evalbnds = [-2 6];

xx1 = linspace(evalbnds(1),evalbnds(2),501)’;

xtest1 = [0.25*randn(nsample,1); 3+0.5*randn(2*nsample,1)];

Compute the PDF estimate, evaluate it, and compute the true mixture PDF.

bss1test = bsspdfest(xtest1);

y1 = bsseval(xx1,bss1test,’pdf’);

ynmix = (1/3)*normpdf(xx1,0,0.25) + (2/3)*normpdf(xx1,3,0.5);

Evaluate the CDFs and compute the true mixture CDFs.

y1 = bsseval(xx1,bss1test,’cdf’);

ynmix = (1/3)*normcdf(xx1,0,0.25) + (2/3)*normcdf(xx1,3,0.5);

Evaluate the survivor function and compute the true mixture survivor function.

y1 = bsseval(xx1,bss1test,’survivor’);

ynmix = 1-((1/3)*normcdf(xx1,0,0.25) + (2/3)*normcdf(xx1,3,0.5));

Evaluate the cumulative hazard function and compute the true mixture cumulative hazard
function.

CHAPTER 3. EXAMPLES 26

Figure 3.6: Estimating a 1-dimensional mixture of two normal distributions using n = 1500
data points. Estimated and true PDF (top) and error (bottom).

CHAPTER 3. EXAMPLES 27

Figure 3.7: Estimate of the cumulative distribution function for a 1-dimensional mixture of
two normal distributions. Estimated and true CDFs (top) and error (bottom).

CHAPTER 3. EXAMPLES 28

Figure 3.8: Estimate of the survivor function for a 1-dimensional mixture of two normal
distributions. Estimated and true survivor functions (top) and error (bottom).

CHAPTER 3. EXAMPLES 29

y1 = bsseval(xx1,bss1test,’cumhazard’);

ynmix = 1-((1/3)*normcdf(xx1,0,0.25) + (2/3)*normcdf(xx1,3,0.5));

gt0 = ynmix>0;

ynmix(~gt0) = nan;

ynmix(gt0) = -log(ynmix(gt0));

Evaluate the ICDF and compute the true mixture ICDF.

xx1p = linspace(0,1,501)’;

y1 = bsseval(xx1p,bss1test,’icdf’);

xx = linspace(-2,6,1001)’;

ympdf = (1/3)*normpdf(xx,0,0.25) + (2/3)*normpdf(xx,3,0.5);

ymcdf = cumtrapz(xx,ympdf);

ztol = 2*max([min(ymcdf) min(abs(1-ymcdf))]);

idx0 = find(ymcdf<ztol,1,’last’);

idx1 = find(abs(1-ymcdf)<ztol,1,’first’);

idxbad = find(diff(ymcdf)==0);

idxbad = idxbad((idxbad>=idx0 & idxbad <=idx1));

idxgood = (idx0:idx1)’;

idxgood = setdiff(idxgood,idxbad);

ymix = interp1(ymcdf(idxgood),xx(idxgood),xx1p,’linear’,’extrap’);

CHAPTER 3. EXAMPLES 30

Figure 3.9: Estimate of the cumulative hazard function for a 1-dimensional mixture of
two normal distributions. Estimated and true cumulative hazard functions (top) and error
(bottom).

CHAPTER 3. EXAMPLES 31

Figure 3.10: Estimate of the ICDF for a 1-dimensional mixture of two normal distributions.
Estimated and true ICDF(top) and error (bottom).

CHAPTER 3. EXAMPLES 32

The mixture distribution example is repeated using, n = 7500 data points from the
unequal mixture of two normal distributions 1

3
N(0, 0.25) + 2

3
N(3, 0.5).

Generate the data and evaluation points.

nsample = 2500;

ndata = 3*nsample;

evalbnds = [-6 8];

xx1 = linspace(evalbnds(1),evalbnds(2),501)’;

xtest1 = [0.25**randn(nsample,1); 3+0.5*randn(2*nsample,1)];

Compute the PDF estimate, evaluate it and compute the true mixture PDF.

bss1test = bsspdfest(xtest1);

y1 = bsseval(xx1,bss1test,’pdf’);

ynmix = (1/3)*normpdf(xx1,0,0.25) + (2/3)*normpdf(xx1,3,0.5);

Evaluate the CDFsand compute the true mixture CDFs.

y1 = bsseval(xx1,bss1test,’cdf’);

ynmix = (1/3)*normcdf(xx1,0,0.25) + (2/3)*normcdf(xx1,3,0.5);

Evaluate the survivor function andcompute the true mixture survivor function.

y1 = bsseval(xx1,bss1test,’survivor’);

ynmix = 1-((1/3)*normcdf(xx1,0,0.25) + (2/3)*normcdf(xx1,3,0.5));

Evaluate the cumulative hazard function and compute the true mixture cumulative hazard
function.

y1 = bsseval(xx1,bss1test,’cumhazard’);

ynmix = 1-((1/3)*normcdf(xx1,0,0.25) + (2/3)*normcdf(xx1,3,0.5));

gt0 = ynmix>0;

ynmix(~gt0) = nan;

ynmix(gt0) = -log(ynmix(gt0));

Evaluate the ICDFand compute the true mixture ICDF.

CHAPTER 3. EXAMPLES 33

Figure 3.11: Estimating a 1-dimensional mixture of two normal distributions using n = 1500
data points. Estimated and true PDF (top) and error (bottom).

CHAPTER 3. EXAMPLES 34

Figure 3.12: Estimate of the cumulative distribution function for a 1-dimensional mixture
of two normal distributions. Estimated and true CDFs (top) and error (bottom).

CHAPTER 3. EXAMPLES 35

Figure 3.13: Estimate of the survivor function for a 1-dimensional mixture of two normal
distributions. Estimated and true survivor functions (top) and error (bottom).

CHAPTER 3. EXAMPLES 36

Figure 3.14: Estimate of the cumulative hazard function for a 1-dimensional mixture of
two normal distributions. Estimated and true cumulative hazard functions (top) and error
(bottom).

CHAPTER 3. EXAMPLES 37

xx1p = linspace(0,1,501)’;

y1 = bsseval(xx1p,bss1test,’icdf’);

xx = linspace(-2,6,1001)’;

ympdf = (1/3)*normpdf(xx,0,0.25) + (2/3)*normpdf(xx,3,0.5);

ymcdf = cumtrapz(xx,ympdf);

ztol = 2*max([min(ymcdf) min(abs(1-ymcdf))]);

idx0 = find(ymcdf<ztol,1,’last’);

idx1 = find(abs(1-ymcdf)<ztol,1,’first’);

idxbad = find(diff(ymcdf)==0);

idxbad = idxbad((idxbad>=idx0 & idxbad <=idx1));

idxgood = (idx0:idx1)’;

idxgood = setdiff(idxgood,idxbad);

ymix = interp1(ymcdf(idxgood),xx(idxgood),xx1p,’linear’,’extrap’);

CHAPTER 3. EXAMPLES 38

Figure 3.15: Estimate of the ICDF for a 1-dimensional mixture of two normal distributions.
Estimated and true ICDF(top) and error (bottom).

CHAPTER 3. EXAMPLES 39

3.2 Two-dimensional examples

3.2.1 Standard normal distribution

For the first 2-dimensional example, n = 5000 data points are generated from a standard
normal distribution N(0, I2), where 0 is the 2-dimensional zero vector and I2 is the 2×2
identity matrix. The data are then used to compute an estimate of the PDF, which is
used subsequently to compute the CDFs and the survivor function. The MATLAB code
used to generate the data and perform the probability function estimation is provided. The
evaluation points and the PDF estimate bss2test are used for each of the probability
functions. Results are plotted for each function comparing the estimated function to the
actual function with the estimation error. Notice in the error plot that the largest magnitude
errors occur where the curvature of the underlying probability density function is changing
most rapidly. These are the regions that are typically the most difficult to fit. The addition
of a few more partition subintervals or basis functions may provide a better fit in these
regions, but may introduce undesirable wiggles.

Generate the data and evaluation points.

nsample = 5000;

evalbnds = repmat([-6 6],2,1);

xtest2 = randn(nsample,2);

xx2 = [

linspace(evalbnds(1,1),evalbnds(1,2),101);

linspace(evalbnds(2,1),evalbnds(2,2),101);

]’;

[xx2mg1, xx2mg2] = ndgrid(xx2(:,1),xx2(:,2));

xx2mg = [xx2mg1(:) xx2mg2(:)];

Compute the PDF estimate, evaluate it, and compute the true two dimensional standard
normal PDF.

bss2test = bsspdfest(xtest2);

y2mg = bsseval(xx2mg,bss2test,’pdf’);

y2 = reshape(y2mg,size(xx2mg1));

y2nmg = mvnpdf(xx2mg,[0 0],ones(1,2));

y2n = reshape(y2nmg,size(xx2mg1));

CHAPTER 3. EXAMPLES 40

Figure 3.16: 5000 data points generated from a 2-dimensional standard normal distribution.

CHAPTER 3. EXAMPLES 41

Figure 3.17: Estimate of a 2-dimensional standard normal PDF using n = 5000 data points.
Estimated PDF (top), true PDF (middle), and estimation error (bottom).

CHAPTER 3. EXAMPLES 42

Evaluate the CDFs estimate and compute the true two dimensional standard normal CDFs.

bss2test = bsspdfest(xtest2);

y2mg = bsseval(xx2mg,bss2test,’cdf’);

y2 = reshape(y2mg,size(xx2mg1));

y2nmg = mvncdf(xx2mg,[0 0],ones(1,2));

y2n = reshape(y2nmg,size(xx2mg1));

Evaluate the survivor function and compute the true two dimensional standard normal sur-
vivor function.

bss2test = bsspdfest(xtest2);

y2mg = bsseval(xx2mg,bss2test,’cdf’);

y2 = reshape(y2mg,size(xx2mg1));

y2nmg = 1-mvncdf(xx2mg,[0 0],ones(1,2));

y2n = reshape(y2nmg,size(xx2mg1));

The 2-dimensional standard normal distribution example is repeated using, n = 10000
data points.

Generate the data and evaluation points.

nsample = 10000;

evalbnds = repmat([-6 6],2,1);

xtest2 = randn(nsample,2);

xx2 = [

linspace(evalbnds(1,1),evalbnds(1,2),101);

linspace(evalbnds(2,1),evalbnds(2,2),101);

]’;

[xx2mg1, xx2mg2] = ndgrid(xx2(:,1),xx2(:,2));

xx2mg = [xx2mg1(:) xx2mg2(:)];

Compute the PDF estimate, evaluate it, and compute the true two dimensional standard
normal PDF.

bss2test = bsspdfest(xtest2);

y2mg = bsseval(xx2mg,bss2test,’pdf’);

CHAPTER 3. EXAMPLES 43

Figure 3.18: Estimate of a 2-dimensional standard normal CDFs using n = 5000 data
points. Estimated CDFs (top), true CDFs (middle), and estimation error (bottom).

CHAPTER 3. EXAMPLES 44

Figure 3.19: Estimate of a 2-dimensional standard normal survivor function using n =
5000 data points. Estimated survivor function (top), true survivor function(middle), and
estimation error (bottom).

CHAPTER 3. EXAMPLES 45

Figure 3.20: 10000 data points generated from a 2-dimensional standard normal distribu-
tion.

CHAPTER 3. EXAMPLES 46

y2 = reshape(y2mg,size(xx2mg1));

y2nmg = mvnpdf(xx2mg,[0 0],ones(1,2));

y2n = reshape(y2nmg,size(xx2mg1));

Evaluate the CDFs estimate and compute the true two dimensional standard normal CDFs.

bss2test = bsspdfest(xtest2);

y2mg = bsseval(xx2mg,bss2test,’cdf’);

y2 = reshape(y2mg,size(xx2mg1));

y2nmg = mvncdf(xx2mg,[0 0],ones(1,2));

y2n = reshape(y2nmg,size(xx2mg1));

Evaluate the survivor function and compute the true two dimensional standard normal sur-
vivor function.

bss2test = bsspdfest(xtest2);

y2mg = bsseval(xx2mg,bss2test,’cdf’);

y2 = reshape(y2mg,size(xx2mg1));

y2nmg = 1-mvncdf(xx2mg,[0 0],ones(1,2));

y2n = reshape(y2nmg,size(xx2mg1));

CHAPTER 3. EXAMPLES 47

Figure 3.21: Estimate of a 2-dimensional standard normal PDF using n = 10000 data
points. Estimated PDF (top), true PDF (middle), and estimation error (bottom).

CHAPTER 3. EXAMPLES 48

Figure 3.22: Estimate of a 2-dimensional standard normal CDFs using n = 10000 data
points. Estimated CDFs (top), true CDFs (middle), and estimation error (bottom).

CHAPTER 3. EXAMPLES 49

Figure 3.23: Estimate of a 2-dimensional standard normal survivor function using n =
10000 data points. Estimated survivor function (top), true survivor function (middle), and
estimation error (bottom).

CHAPTER 3. EXAMPLES 50

3.2.2 Mixture of 5 2-dimensional normal distributions

For this example, n = 50000 data points are generated from an equal mixture of five
normal distributions, with 10000 points from each component of the mixture, f(x) =
1
5

∑5
i=1N(µi,Σi) and used to compute an estimate of the PDF, where

µ1 =

(
0
0

)
, µ2 =

(
−3
−3

)
, µ3 =

(
3
3

)
, µ4 =

(
3
−3

)
, µ5 =

(
−3
3

)
,

and

Σ1 =

(
0.9 −0.4
−0.4 0.9

)
,Σi =

(
0.9 0.4
0.4 0.9

)
, i = 2, 3, 4, 5

Generate the data and evaluation points.

nsample = 10000;

ndata = 5*nsample;

xmu = [0 0; -3 -3; 3 3; 3 -3; -3 3];

xcov0 = [0.9 -0.4; -0.4 0.3];

xcov3 = [0.9 0.4; 0.4 0.3];

chxcov0 = cholcov(xcov0);

chxcov3 = cholcov(xcov3);

evalbnds = [-9 9;-7 7];

xtest2 = [

repmat(xmu(1,:),nsample,1) + randn(nsample,2)*chxcov0;

repmat(xmu(2,:),nsample,1) + randn(nsample,2)*chxcov3;

repmat(xmu(3,:),nsample,1) + randn(nsample,2)*chxcov3;

repmat(xmu(4,:),nsample,1) + randn(nsample,2)*chxcov3;

repmat(xmu(5,:),nsample,1) + randn(nsample,2)*chxcov3;

];

xx2 = [

linspace(evalbnds(1,1),evalbnds(1,2),101);

linspace(evalbnds(2,1),evalbnds(2,2),101);

]’;

[xx2mg1, xx2mg2] = ndgrid(xx2(:,1),xx2(:,2));

xx2mg = [xx2mg1(:) xx2mg2(:)];

CHAPTER 3. EXAMPLES 51

Figure 3.24: 50000 data points generated from a mixture of 5 2-dimensional normal distri-
butions.

CHAPTER 3. EXAMPLES 52

Compute the PDF estimate, evaluate it and compute the true two dimensional mixture PDF.

bss2test = bsspdfest(xtest2);

y2mg = bsseval(xx2mg,bss2test,’pdf’);

y2 = reshape(y2mg,size(xx2mg1));

y2nmg = zeros(length(xx2mg),1);

for i = 1:5

if (i == 1)

y2nmg = y2nmg + (1/5)*mvnpdf(xx2mg,xmu(i,:),xcov0);

else

y2nmg = y2nmg + (1/5)*mvnpdf(xx2mg,xmu(i,:),xcov3);

end

end

y2n = reshape(y2nmg,size(xx2mg1));

Evaluate the CDFs estimate and compute the true two dimensional mixture CDFs.

bss2test = bsspdfest(xtest2);

y2mg = bsseval(xx2mg,bss2test,’cdf’);

y2 = reshape(y2mg,size(xx2mg1));

y2nmg = zeros(length(xx2mg),1);

for i = 1:5

if (i == 1)

y2nmg = y2nmg + (1/5)*mvncdf(xx2mg,xmu(i,:),xcov0);

else

y2nmg = y2nmg + (1/5)*mvncdf(xx2mg,xmu(i,:),xcov3);

end

end

y2n = reshape(y2nmg,size(xx2mg1));

Evaluate the survivor function estimate and compute the true two dimensional mixture
survivor function.

bss2test = bsspdfest(xtest2);

y2mg = bsseval(xx2mg,bss2test,’survivor’);

y2 = reshape(y2mg,size(xx2mg1));

y2nmg = zeros(length(xx2mg),1);

CHAPTER 3. EXAMPLES 53

Figure 3.25: Estimating a mixture of 5 2-dimensional normal distributions using n = 50000
data points. Estimated PDF (top), true PDF (middle), and estimation error (bottom).

CHAPTER 3. EXAMPLES 54

Figure 3.26: Estimated CDFs for a mixture of 5 2-dimensional normal distributions using
n = 50000 data points. Estimated CDFs (top), true CDFs (middle), and estimation error
(bottom).

CHAPTER 3. EXAMPLES 55

for i = 1:5

if (i == 1)

y2nmg = y2nmg + (1/5)*mvncdf(xx2mg,xmu(i,:),xcov0);

else

y2nmg = y2nmg + (1/5)*mvncdf(xx2mg,xmu(i,:),xcov3);

end

end

y2n = 1-reshape(y2nmg,size(xx2mg1));

CHAPTER 3. EXAMPLES 56

Figure 3.27: Estimated survivor function for a mixture of 5 2-dimensional normal distribu-
tions using n = 50000 data points. Estimated survivor function (top), true survivor function
(middle), and estimation error (bottom).

CHAPTER 3. EXAMPLES 57

3.3 Three-dimensional examples

3.3.1 Standard normal distribution

For the first 3-dimensional example, n = 25000 data points are generated from a standard
normal distribution N(0, I3), where 0 is the 3-dimensional zero vector and I3 is the 3×3
identity matrix, and used to compute an estimate of the PDF. The MATLAB code used to
generate the data and perform the PDF estimation for the standard 3-dimensional normal
distribution appears below. A scatter plot of the data is presented in Figure 3.28, and plots
of the marginal density functions obtained using cross sections defined by the xy-plane, the
xz-plane, and the yz-plane for the estimated PDF, the true PDF and the estimation error
are presented in Figure 3.29,Figure 3.30, and Figure 3.31.

Generate the data and evaluation points.

neval = 51;

nsample = 25000;

xtest3 = randn(nsample,3);

evalbnds = repmat([-6 6],3,1);

xx3 = [

linspace(evalbnds(1,1),evalbnds(1,2),neval);

linspace(evalbnds(2,1),evalbnds(2,2),neval);

linspace(evalbnds(3,1),evalbnds(3,2),neval);

]’;

[xx3mg1, xx3mg2, xx3mg3] = ndgrid(xx3(:,1),xx3(:,2),xx3(:,3));

xx3mg = [xx3mg1(:) xx3mg2(:) xx3mg3(:)];

Compute the PDF estimate, evaluate it, and compute the true three dimensional standard
normal PDF.

bss3test = bsspdfest3d(xtest3);

y3mg = bsseval3d(xx3mg,bss3test,’pdf’);

y3 = reshape(y3mg,size(xx3mg1));

y3nmg = mvnpdf(xx3mg,[0 0 0],ones(1,3));

y3n = reshape(y3nmg,size(xx3mg1));

Evaluate the CDFs estimate and compute the true three dimensional standard normal CDFs.

CHAPTER 3. EXAMPLES 58

Figure 3.28: 25000 data points generated from a 3-dimensional standard normal distribu-
tion.

CHAPTER 3. EXAMPLES 59

Figure 3.29: Estimating a 3-dimensional standard normal distribution using n = 25000
data points. Estimated PDF (top), true PDF (middle), and estimation error (bottom) for
dimensions 1 and 2.

CHAPTER 3. EXAMPLES 60

Figure 3.30: Estimating a 3-dimensional standard normal distribution using n = 25000
data points. Estimated PDF (top), true PDF (middle), and estimation error (bottom) for
dimensions 1 and 3.

CHAPTER 3. EXAMPLES 61

Figure 3.31: Estimating a 3-dimensional standard normal distribution using n = 25000
data points. Estimated PDF (top), true PDF (middle), and estimation error (bottom) for
dimensions 2 and 3.

CHAPTER 3. EXAMPLES 62

y3mg = bsseval3d(xx3mg,bss3test,’cdf’);

y3 = reshape(y3mg,size(xx3mg1));

y3nmg = mvncdf(xx3mg,[0 0 0],ones(1,3));

y3n = reshape(y3nmg,size(xx3mg1));

Evaluate the survivor function estimate and compute the true three dimensional standard
normal survivor function.

y3mg = bsseval3d(xx3mg,bss3test,’survivor’);

y3 = reshape(y3mg,size(xx3mg1));

y3nmg = 1-mvncdf(xx3mg,[0 0 0],ones(1,3));

y3n = reshape(y3nmg,size(xx3mg1));

CHAPTER 3. EXAMPLES 63

Figure 3.32: Estimating a 3-dimensional standard normal CDFs using n = 25000 data
points. Estimated CDFs (top), true CDFs (middle), and estimation error (bottom) for
dimensions 1 and 2.

CHAPTER 3. EXAMPLES 64

Figure 3.33: Estimating a 3-dimensional standard normal CDFs using n = 25000 data
points. Estimated CDFs (top), true CDFs (middle), and estimation error (bottom) for
dimensions 1 and 3.

CHAPTER 3. EXAMPLES 65

Figure 3.34: Estimating a 3-dimensional standard normal CDFs using n = 25000 data
points. Estimated CDFs (top), true CDFs (middle), and estimation error (bottom) for
dimensions 2 and 3.

CHAPTER 3. EXAMPLES 66

Figure 3.35: Estimating a 3-dimensional standard normal survivor function using n =
25000 data points. Estimated survivor function (top), true survivor function (middle), and
estimation error (bottom) for dimensions 1 and 2.

CHAPTER 3. EXAMPLES 67

Figure 3.36: Estimating a 3-dimensional standard normal survivor function using n =
25000 data points. Estimated survivor function (top), true survivor function (middle), and
estimation error (bottom) for dimensions 1 and 3.

CHAPTER 3. EXAMPLES 68

Figure 3.37: Estimating a 3-dimensional standard normal survivor function using n =
25000 data points. Estimated survivor function (top), true survivor function (middle), and
estimation error (bottom) for dimensions 2 and 3.

CHAPTER 3. EXAMPLES 69

3.3.2 Mixture of 5 3-dimensional normal distributions

For this example, n = 25000 data points are generated from an equal mixture of five 3-
dimensional normal distributions f(x) = 1

5

∑5
i=1 N(µi,Σi), with 5000 points from each com-

ponent of the mixture, and used to compute an estimate of the PDF, where

µ1 =

 0
0
0

 , µ2 =

 −3
−3
0

 , µ3 =

 3
3
0

 , µ4 =

 3
−3
0

 , µ5 =

 −3
3
0

 ,

and

Σ1 =

 1 0 0
0 1 0
0 0 1

 ,Σi =

 0.9 0 0
0 0.3 0
0 0 1

 , i = 2, 3, 4, 5

Unlike the 3-dimensional normal distribution, there is only one convenient plane to use
for examining the marginal distribution, the xy-plane. To overcome this handicap, three
dimensional visualizations of the marginal distributions for cross sections through the data
using planes parallel to the xy-plane and the yz-plane were generated. These visualizations
of the estimated PDF used planar cross sections through the data perpendicular to the x-
axis and perpendicular to the z-axis. The Visualizations are MPEG-4 video files and were
too large to include in this document, but they are available with the bsspdfest MATLAB
toolbox and on the internet at Mixture density visualization x-axis and Mixture density
visualization z-axis.

Generate the data and the evaluation points.

neval = 101;

nsample = 5000;

ndata = 5*nsample;

xmu = [0 0 0; -3 -3 0; 3 3 0; 3 -3 0; -3 3 0];

xcov0 = [0.9 0 0; 0 0.3 0; 0 0 1];

xcov3 = [0.9 0 0; 0 0.3 0; 0 0 1];

chxcov0 = cholcov(xcov0);

chxcov3 = cholcov(xcov3);

evalbnds = repmat([-10 10],3,1);

xtest3 = [

repmat(xmu(1,:),nsample,1) + randn(nsample,3)*chxcov0;

repmat(xmu(2,:),nsample,1) + randn(nsample,3)*chxcov3;

http://www.biometricsnw.com/projects/bssest/3d_mixture_movie_step_x.mp4
http://www.biometricsnw.com/projects/bssest/3d_mixture_movie_step_z.mp4
http://www.biometricsnw.com/projects/bssest/3d_mixture_movie_step_z.mp4

CHAPTER 3. EXAMPLES 70

repmat(xmu(3,:),nsample,1) + randn(nsample,3)*chxcov3;

repmat(xmu(4,:),nsample,1) + randn(nsample,3)*chxcov3;

repmat(xmu(5,:),nsample,1) + randn(nsample,3)*chxcov3;

];

xx3 = [

linspace(evalbnds(1,1),evalbnds(1,2),neval);

linspace(evalbnds(2,1),evalbnds(2,2),neval);

linspace(evalbnds(3,1),evalbnds(3,2),neval);

]’;

[xx3mg1, xx3mg2, xx3mg3] = ndgrid(xx3(:,1),xx3(:,2),xx3(:,3));

xx3mg = [xx3mg1(:) xx3mg2(:) xx3mg3(:)];

Evaluate the PDF estimate and compute the true three dimensional mixture PDF.

bss3test = bsspdfest(xtest3);

y3mg = bsseval(xx3mg,bss3test,’pdf’);

y3 = reshape(y3mg,size(xx3mg1));

y3nmg = zeros(length(xx3mg),1);

for i = 1:5

if (i == 1)

y3nmg = y3nmg + (1/5)*mvnpdf(xx3mg,xmu(i,:),xcov0);

else

y3nmg = y3nmg + (1/5)*mvnpdf(xx3mg,xmu(i,:),xcov3);

end

end

y3n = reshape(y3nmg,size(xx3mg1));

CHAPTER 3. EXAMPLES 71

Figure 3.38: 25000 data points generated from a mixture of 5 3-dimensional normal distri-
butions.

CHAPTER 3. EXAMPLES 72

Figure 3.39: MATLAB plotmatrix of the 25000 data points generated from a mixture of 5
3-dimensional normal distributions.

CHAPTER 3. EXAMPLES 73

3.4 Bounded domain examples

When using a B-spline series approximation to a probability function, in particular a PDF,
a bounding box specifying the rectilinear boundaries of a finite estimation domain must be
defined in order to generate the uniformly spaced partition for each dimension. The limits
of the bounding box are typically defined so that the estimated PDF gradually becomes
zero at a rate controlled by the order m of the B-spline basis functions used in a particular
series. For m > 1 the support of the estimated PDF, the region where the estimated PDF
is positive, can extend beyond the boundaries of the bounding box specifying the domain of
the function. For a PDF that approaches zero smoothly as values of x increase or decrease,
this poses no difficulties: the limits of a bounding box may be increased or decreased to
accommodate the smooth approach to a zero value.

If, however, there is an active boundary where there is a discontinuity of the PDF, being
positive inside the bounding box and zero outside the bounding box, having positive values
outside the box becomes problematic, for example a uniform distribution or an exponential
distribution. For m = 1 the B-spline series produces a histogram estimate of a PDF, and the
limits of the bounding box exactly specify the domain of the estimated PDF, and all of the
boundaries are considered to be active, even if the estimated PDF has a value of zero: this
simply means that the support of the underlying PDF may be a strict subset of the domain
specified by the bounding box. For a B-spline series having an order m > 1 and an active
boundary, a boundary correction must be performed to eliminate the positive values outside
the active boundary in order to reduce the bias at the boundary.

When using a B-spline series to estimate a function it is possible to automatically detect
active boundaries. When an active boundary is detected, reflection through the boundary
is used to adjust the B-spline series coefficients at the boundary (Jones, 1993). The au-
tomatic detection and correction of active boundaries for a B-spline series PDF estimate
has been implemented for all dimensions. For two- and three-dimensional data the reflec-
tion based corrections are also made for corners and edges where multiple active boundaries
intersect. For dimensions greater than three, the reflection based correction is applied for
active boundaries only, without additional corrections for the intersection of multiple active
boundaries.

CHAPTER 3. EXAMPLES 74

3.4.1 One-dimensional bounded domains

Three one-dimensional examples of probability density function estimation on bounded do-
mains are presented: a uniform distribution in Section 3.4.1, an exponential distribution
in Section 3.4.1, and a truncated normal distribution in Section 3.4.1. These examples use
functions from the MATLAB Statistics and Machine Learning Toolbox.

Uniform distribution

For the first example, n = 100000 data points are generated from a uniform distribution
U(0, 1) and used to compute two estimates of the PDF: one with a bounded domain restricted
to the interval [0, 1] (bssu1) and one with an unbounded domain (bssunb1). A large sample
size was used to fill the domain of the underlying distribution with data points to demonstrate
the edge effects at the boundaries. The MATLAB code used to generate the data and
perform the PDF estimation is provided, as well as the code for the evaluation points and
the evaluated B-spline series. Results are plotted for each PDF estimate comparing it to the
actual function along with the a plot of the estimation errors.

Generate the data and evaluation points.

rng(’default’);

xu1 = rand(100000,1);

xxu1 = linspace(-.1,1.1,5001)’;

Compute the PDF estimate, evaluate it, and compute the true standard normal PDF.

bssunb1 = bsspdfest(xu1);

bssu1 = bsspdfest(xu1,[0 1]);

yut1 = unifpdf(xxu1);

yu = bsseval(xxu1,bssu1);

yunb1 = bsseval(xxu1,bssunb1);

Note the poor fit near the corners of the uniform distribution in Figure 3.40. Since the default
B-spline order, m = 4, was used to produce cubic B-splines it will be nearly impossible to get
a good fit in the corners: The cubic splines must curve. It is possible, however, to improve
the fit by using a smaller B-spline order, m = 1 for a histogram estimate or m = 2 for a
linear estimate using “hat” functions. The uniform distribution estimation is repeated using

CHAPTER 3. EXAMPLES 75

Figure 3.40: Estimate of a 1-dimensional uniform distribution U(0, 1). Estimated and true
PDFs (top) and errors (bottom).

CHAPTER 3. EXAMPLES 76

the B-spline order m = 1. The different partition sizes were used to make the partition
sub-intervals for the bounded and unbounded estimations nearly equal.

bssunb1 = bsspdfest(xu1,[],17,1);

bssu1 = bsspdfest(xu1,[0 1],11,1);

yut1 = unifpdf(xxu1);

yu = bsseval(xxu1,bssu1);

yunb1 = bsseval(xxu1,bssunb1);

The results of using the histogram estimate are given in Figure 3.41, and clearly indicate the
better performance of the histogram and the better fit in the corners.

CHAPTER 3. EXAMPLES 77

Figure 3.41: Estimate of a 1-dimensional uniform distribution U(0, 1) using a B-spline order
of m = 1 to produce a histogram. Estimated and true PDFs (top) and errors (bottom).

CHAPTER 3. EXAMPLES 78

Exponential distribution

For the second example, n = 100000 data points are generated from an exponential distri-
bution with mean µ = 2, f(x) = 1

2
exp(−x/2), and used to compute two estimates of the

PDF: one with a bounded domain restricted to the interval [0,∞) (bsse1) and one with an
unbounded domain (bssenb1). A large sample size was again used to fill the domain of the
underlying distribution with data points to demonstrate the edge effects at the boundary.
The MATLAB code used to generate the data and perform the PDF estimation is provided,
as well as the code for the evaluation points and the evaluated B-spline series. Results are
plotted for each PDF estimate comparing it to the actual function along with the a plot of
the estimation errors.

Generate the data and evaluation points.

rng(’default’);

xe1 = exprnd(2,100000,1);

xxe1 = linspace(-1,22,5001)’;

Compute the PDF estimate, evaluate it, and compute the true standard normal PDF.

bsse1 = bsspdfest(xe,[0 22]);

bssenb1 = bsspdfest(xe,[-1 22]);

yet1 = exppdf(xxe,2);

ye1 = bsseval(xxe,bsse);

yenb1 = bsseval(xxe,bssenb);

CHAPTER 3. EXAMPLES 79

Figure 3.42: Estimate of a 1-dimensional exponential distribution with mean µ = 2 and n
= 100000. Estimated and true PDFs (top) and errors (bottom).

CHAPTER 3. EXAMPLES 80

Truncated normal distribution

For the third example, n = 100000 data points are generated from a standard normal
distribution and filtered to obtain 91113 points from a truncated normal distribution on the
interval [−2, 1.5], N(0, 1,−2, 1.5). The 91113 points were then used to compute two estimates
of the PDF: one with a bounded domain restricted to the interval [−2, 1.5] (bsstn1) and one
with an unbounded domain (bsstnnb1). A large sample size was used to fill the domain of
the underlying distribution with data points to demonstrate the edge effects at the boundary.
The MATLAB code used to generate the data and perform the PDF estimation is provided,
as well as the code for the evaluation points and the evaluated B-spline series. Results are
plotted for each PDF estimate comparing it to the actual function along with the a plot of
the estimation errors.

Generate the data and evaluation points.

rng(’default’);

xtn1 = randn(100000,1);

xtn1 = xtn1(xtn1>-2.0&xtn1<1.5);

xxtn1 = linspace(-2.1,1.6,5001)’;

inbounds = xxtn1>-2.0 & xxtn1<1.5;

xxtnt1 = xxtn1(inbounds);

Compute the PDF estimate, evaluate it, and compute the true standard normal PDF.

bsstn1 = bsspdfest(xtn1,[-2.0 1.5]);

bsstnnb1 = bsspdfest(xtn1);

ytnt1 = zeros(size(xxtn1));

ytnt1(inbounds) = normpdf(xxtnt1);

ytnt1(inbounds) = ytnt1(inbounds)./trapz(xxtnt1,ytnt1(inbounds));

ytn1 = bsseval(xxtn1,bsstn1);

ytnnb1 = bsseval(xxtn1,bsstnnb1);

CHAPTER 3. EXAMPLES 81

Figure 3.43: Estimate of a 1-dimensional truncated normal distribution with interval
[−2, 1.5], n = 91113. Estimated and true PDFs (top) and errors (bottom).

CHAPTER 3. EXAMPLES 82

3.4.2 Two-dimensional bounded domains

Two two-dimensional examples of probability density function estimation on bounded do-
mains are presented: a uniform distribution in Section 3.4.2 and a truncated normal dis-
tribution in Section 3.4.2. These examples use functions from the MATLAB Statistics and
Machine Learning Toolbox.

Uniform distribution

For the first 2-dimensional example, n = 200000 data points are generated from a 2-
dimensional uniform distribution on [0, 1) × [0, 1). The data are then used to compute
two estimates of the PDF: one with a bounded domain restricted to the region [0, 1)× [0, 1)
(bssu2) and one with an unbounded domain (bssunb2). The MATLAB code used to gen-
erate the data and perform the probability function estimation is provided. Results are
plotted for each estimated PDF comparing the estimated function to the actual function
with the estimation error. Notice in the error plots that the largest magnitude errors occur
at the boundary and corners for the unbounded PDF estimate and where the curvature of
the underlying probability density function is changing most rapidly. These are the regions
that are typically the most difficult to fit.

Generate the data and evaluation points.

rng(’default’)

xu2 = rand(200000,2);

xx1u = linspace(-0.1,1.1,101)’;

xx2u = linspace(-0.1,1.1,101)’;

[xx1ug,xx2ug] = ndgrid(xx1u,xx2u);

xxu2 = [xx1ug(:) xx2ug(:)];

Compute the PDF estimate, evaluate it, and compute the true two dimensional truncated
normal PDF. The partition sizes of 23 and 31 were chosen for the bounded and unbounded
PDF estimates to generate similar partition widths for a consistent comparison of the esti-
mation errors.

bssu2 = bsspdfest(xu2,[0 1;0 1],[23 23]’);

bssunb2 = bsspdfest(xu2,[],[31 31]’);

yut2 = double(reshape(...

CHAPTER 3. EXAMPLES 83

Figure 3.44: 200000 data points generated from a 2-dimensional uniform distribution.

CHAPTER 3. EXAMPLES 84

(xx1ug(:)>=0 & xx1ug(:)<1) & ...

(xx2ug(:)>=0 & xx2ug(:)<1),size(xx1ug)));

yu2 = reshape(bsseval(xxu2,bssu2),size(xx1ug));

yunb2 = reshape(bsseval(xxu2,bssunb2),size(xx1ug));

CHAPTER 3. EXAMPLES 85

Figure 3.45: Estimate of a 2-dimensional uniform PDF using n = 200000 data points and
estimation bounds restricted to the semi-infinite rectangle [0, 1) × [0, 1). Estimated PDF
(top), true PDF (middle), and estimation error (bottom).

CHAPTER 3. EXAMPLES 86

Figure 3.46: Estimate of a 2-dimensional uniform PDF using n = 200000 data points and
unrestricted estimation bounds. Estimated PDF (top), true PDF (middle), and estimation
error (bottom).

CHAPTER 3. EXAMPLES 87

Truncated normal distribution

For the second 2-dimensional example, n = 200000 data points are generated from a 2-
dimensional standard normal distribution N(0, I2), where 0 is the 2-dimensional zero vector
and I2 is the 2×2 identity matrix, and filtered to obtain 174221 points from a truncated nor-
mal distribution having a domain defined by the semi-infinite rectangle [−1.5,∞)×[−1.5,∞).
The data are then used to compute two estimates of the PDF: one with a bounded domain
restricted to the region [−1.5,∞)× [−1.5,∞) (bsstn2) and one with an unbounded domain
(bsstnnb2). The MATLAB code used to generate the data and perform the probability
function estimation is provided. Results are plotted for each estimated PDF comparing the
estimated function to the actual function with the estimation error. Notice in the error plots
that the largest magnitude errors occur at the boundary for the unbounded PDF estimate
and where the curvature of the underlying probability density function is changing most
rapidly. These are the regions that are typically the most difficult to fit.

Generate the data and evaluation points.

rng(’default’);

xtn2 = randn(200000,2);

xtn2 = xtn2((xtn2(:,1)>-1.5)&(xtn2(:,2)>-1.5),:);

xx1tn2 = linspace(-2,5,101)’;

xx2tn2 = linspace(-2,5,101)’;

[xx1tng,xx2tng] = ndgrid(xx1tn2,xx2tn2);

xxtn2 = [xx1tng(:) xx2tng(:)];

inbounds = (xxtn2(:,1)>-1.5) & (xxtn2(:,2)>-1.5);

xxtnt2 = xxtn2(inbounds,:);

Compute the PDF estimate, evaluate it, and compute the true two dimensional truncated
normal PDF.

bsstn2 = bsspdfest(xtn2,[-1.5 5;-1.5 5],[31 31]’);

bsstnnb2 = bsspdfest(xtn2);

ytnt2 = zeros(size(xxtn2,1),1);

ytnt2(inbounds) = mvnpdf(xxtnt2);

ytnt2 = ytnt2./(sum(ytnt2(:) ...

*prod([xx1tn2(2)-xx1tn2(1) xx2tn2(2)-xx2tn2(1)])));

ytnt2 = reshape(ytnt2,size(xx1tng));

ytn2 = reshape(bsseval(xxtn2,bsstn2),size(xx1tng));

CHAPTER 3. EXAMPLES 88

Figure 3.47: 174221 data points generated from a 2-dimensional truncated normal distri-
bution.

CHAPTER 3. EXAMPLES 89

ytnnb2 = reshape(bsseval(xxtn2,bsstnnb2),size(xx1tng));

CHAPTER 3. EXAMPLES 90

Figure 3.48: Estimate of a 2-dimensional truncated normal PDF using n = 174221 data
points and estimation bounds restricted to the semi-infinite rectangle [−1.5,∞)× [−1.5,∞).
Estimated PDF (top), true PDF (middle), and estimation error (bottom).

CHAPTER 3. EXAMPLES 91

Figure 3.49: Estimate of a 2-dimensional truncated normal PDF using n = 174221 data
points and unrestricted estimation bounds. Estimated PDF (top), true PDF (middle), and
estimation error (bottom).

CHAPTER 3. EXAMPLES 92

Reflection vs. Histogram correction at the boundaries

Previous versions of the bsspdfest toolbox, version 2.2.0 and 2.2.1, used a histogram bound-
ary correction. A brief comparison of the new reflection boundary correction and the his-
togram boundary correction for a one-dimensional truncated normal distribution is presented
to show the differences between the two approaches at the boundaries. First, generate the
data and evaluation points and the true truncated normal PDF.

rng(’default’);

xtn1 = randn(100000,1);

xtn1 = xtn1(xtn1>-2.0&xtn1<1.5);

xxtn1 = linspace(-2.1,1.6,5001)’;

inbounds = xxtn1>-2.0 & xxtn1<1.5;

xxtnt1 = xxtn1(inbounds);

ytnt1 = zeros(size(xxtn1));

ytnt1(inbounds) = normpdf(xxtnt1);

ytnt1(inbounds) = ytnt1(inbounds)./trapz(xxtnt1,ytnt1(inbounds));

Compute the truncated normal PDF estimates with the default partition size, using the new
reflection based boundary correction and the old histogram based boundary correction, and
evaluate the estimated PDFs.

% Estimate with reflection boundary correction

bsstn1 = bsspdfest(xtn1,[-2.0 1.5]);

ytn1 = bsseval(xxtn1,bsstn1);

% Estimate with histogram boundary correction

bsstnh1 = bsspdfest_h(xtn1,[-2.0 1.5]);

ytnh1 = bsseval(xxtn1,bsstnh1);

The results presented in Figure 3.50, at first glance, would seem to favor the histogram
boundary correction since the reflection boundary correction produces larger magnitude
errors at the boundary. However, the default partition size contains 89 subintervals and
under-smooths the estimated PDFs, indicated by the large number of wiggles around the
true truncated normal distribution. A consequence of this behavior is that there are more
subintervals, and hence basis functions, near the boundaries, that allow the PDF estimated
using the reflection boundary correction to decline rapidly near the boundary. This decline
occurs outside the boundary correction zone, that is, far enough from the boundary that the

CHAPTER 3. EXAMPLES 93

boundary has no impact. This is exactly what is supposed to occur: the reflection boundary
correction is occurring, but only the partition subintervals, and basis functions, closest to
the boundary are affected, and there are simply too many partition subintervals creating a
very localized boundary correction. The steep decline outside the boundary correction zone
is caused by the smaller amount of data available adjacent to the boundary correction zone.

Reducing the partition size from the default of 89 subintervals to 11 subintervals,

% Estimate with reflection boundary correction

bsstn1 = bsspdfest(xtn1,[-2.0 1.5],11);

ytn1 = bsseval(xxtn1,bsstn1);

% Estimate with histogram boundary correction

bsstnh1 = bsspdfest_h(xtn1,[-2.0 1.5],11);

ytnh1 = bsseval(xxtn1,bsstnh1);

see figure Figure 3.51, improves the situation for the reflection boundary correction. In fact,
the reflection boundary correction even provides a reasonable approximation to the first
derivatives of the truncated normal distribution at the boundaries, whereas the histogram
boundary correction clearly does not. The reflection boundary correction reduces the bias
at the boundary while providing better agreement with the first derivative of the estimated
PDF at the boundaries provided a partition size that does not under-smooth is used. This
partition size can be readily determined by trial and error.

CHAPTER 3. EXAMPLES 94

Figure 3.50: Estimate of a 1-dimensional truncated normal distribution with domain
[−2, 1.5] using the default partition size. Estimated and true PDFs (top) and errors (bot-
tom).

CHAPTER 3. EXAMPLES 95

Figure 3.51: Estimate of a 1-dimensional truncated normal distribution with domain
[−2, 1.5] using a custom partition size. Estimated and true PDFs (top) and errors (bot-
tom).

CHAPTER 3. EXAMPLES 96

3.5 Efficient use of B-spline series estimators

The separate estimation (bsspdfest) and evaluation (bsseval) functions for B-spline series
approximations may be used in several scenarios relating to the number of estimation and
evaluation calls that are required to solve a problem. These usage scenarios are designated
EE(n,m), where n and m are the numbers of estimation and evaluation calls that are neces-
sary to solve a particular problem. The scenario EE(1,1) indicates that there is a one to one
relationship between estimation calls and evaluation calls. This is comparable to the case for
kernel based methods of probability density estimation where sample points and evaluation
points are provided to a combined estimation/evaluation function. The scenario EE(1,m)
indicates that there are m evaluation calls for each estimation call, potentially allowing a
significant reduction in the computation time necessary to solve a problem. An example of
this usage scenario would be a simulation requiring many likelihood values, but having a
fixed, but unknown, underlying probability density function that must be estimated from
a sample. The scenario EE(n,m) indicates that there are m evaluation calls for each of n
estimation calls. An example of this usage scenario would be a simulation or other com-
putation requiring many likelihood values, but having an unknown underlying probability
density function that changes over time, or that is updated periodically with new data, and
must be estimated from samples taken at different points in time.

The bsseval function also supports the creation of a gridded interpolant that is added
to a B-spline series data structure for very fast approximate evaluation of a B-spline series.
Three types of gridded interpolants may be created: bss, pdf, and cdf. The bss is the
default and generates a gridded interpolant for fast evaluation of the function represented
by a B-spline series. If the B-spline series represents a PDF then the pdf or cdf gridded
interpolants may be created for fast evaluation of a PDF or CDFs. If a gridded interpolant
exists in a B-spline series data structure it is used when evaluating the B-spline series for a
specific probability function.

A gridded interpolant is created by using a second output argument with the bsseval

function. The MATLAB code

[y,bssoutp] = bsseval(x,bssin,’pdf’)

creates a gridded interpolant that is used to evaluate a PDF. For this example, the output
B-spline series data structure bssoutp will be identical to the input B-spline series data
structure bssin except for the addition of a new field bssoutp.pdf. A gridded interpolant
for a CDFs can also be added to a B-spline series data structure by using bssoutp as

CHAPTER 3. EXAMPLES 97

the input to bsseval and bssoutpc as the second output argument that will contain both
gridded interpolants in the fields bssoutp.pdfand bssoutp.cdf.

[y,bssoutpc] = bsseval(x,bssoutp,’cdf’)

This is, however, not a memory efficient way to rapidly compute both the PDF and CDFs
when using a gridded interpolant. Instead, simply create the pdf gridded interpolant which
will be used to compute the PDF or the CDFs. If the B-spline series represents a probability
density function, the same results may be obtained by using the bss gridded interpolant. A
gridded interpolant has usage scenarios GI(1,m) and GI(n,m) that are comparable to usage
scenarios EE(1,m) and EE(n,m). The cost of creating a gridded interpolant makes a usage
scenario equivalent to EE(1,1) impractical: it would take longer to compute than the EE(1,1)
usage scenario.

To demonstrate the benefits of using a gridded interpolant, consider the problem of
estimating and evaluating a standard normal distribution in one, two, and three dimensions
for the EE(1,1) usage scenario repeated 250 times, the EE(10,25) and EE(1,250) usage
scenarios, and the GI(10,25) and GI(1,250) usage scenarios. For each data dimension and
usage scenario a common random sample was used to estimate the PDF. The PDF was than
estimated and evaluated the specified number of times for each scenario. For the gridded
interpolant scenarios, the PDF was estimated and a gridded interpolant for the pdf was
created before the PDF was evaluated. Timing results, in seconds, for a variety of sample
sizes ranging from 100 to 100000 points for each data dimension and using 1001, 5041,
and 132651 evaluation points for the one, two, and three dimensional data are presented
in Table 3.2, Table 3.3, and Table 3.4. Note the dramatic reduction in computation time
for the GI(1,250) scenario relative to the EE(n,m) usage scenarios for the two and three
dimensional problems. Everything is fast for one dimensional data, so the reductions in
computation time for this case are not as dramatic, but are still quite respectable.

The two dimensional PDF produced from the B-spline series and its error are presented
in Figure 3.52 and the PDF computed using the gridded interpolant and its error are given in
Figure 3.53. Visually these two estimates are identical, but they are different, and Figure 3.54
is a plot of the difference between the B-spline series estimate and the gridded interpolant
estimate.

CHAPTER 3. EXAMPLES 98

Table 3.2: Times (seconds) to estimate a one dimensional standard normal PDF.
Ndata Neval EE(1,1) EE(10,25) EE(1,250) GI(10,25) GI(1,250)
100 1001 0.25 0.14 0.11 0.07 0.06
250 1001 0.28 0.12 0.10 0.07 0.06
500 1001 0.26 0.11 0.10 0.07 0.06

1000 1001 0.39 0.12 0.10 0.07 0.06
2500 1001 0.49 0.11 0.10 0.08 0.06
5000 1001 0.54 0.12 0.10 0.08 0.06

10000 1001 1.05 0.14 0.10 0.11 0.06
25000 1001 1.85 0.18 0.11 0.14 0.06
50000 1001 4.47 0.28 0.12 0.25 0.08
100000 1001 8.55 0.46 0.14 0.43 0.10

Table 3.3: Times (seconds) to estimate a two dimensional standard normal PDF.
Ndata Neval EE(1,1) EE(10,25) EE(1,250) GI(10,25) GI(1,250)
100 5041 3.82 3.09 3.86 0.28 0.12
250 5041 4.35 3.66 3.61 0.40 0.14
500 5041 4.86 4.19 4.90 0.49 0.13

1000 5041 5.29 4.52 4.87 0.70 0.15
2500 5041 6.70 5.40 5.27 1.27 0.22
5000 5041 7.71 5.84 5.73 1.97 0.27

10000 5041 9.88 6.50 6.36 3.07 0.39
25000 5041 14.03 7.28 7.15 5.56 0.63
50000 5041 21.54 7.76 7.09 8.81 0.97
100000 5041 36.84 8.37 7.30 14.32 1.51

Table 3.4: Times (seconds) to estimate a three dimensional standard normal PDF.
Ndata Neval EE(1,1) EE(10,25) EE(1,250) GI(10,25) GI(1,250)
100 132651 32.56 31.10 38.89 0.59 0.33
250 132651 42.45 42.15 41.89 0.95 0.41
500 132651 52.57 52.30 52.76 1.30 0.46
1000 132651 58.66 58.21 68.44 2.21 0.65
2500 132651 71.58 70.95 75.83 5.54 1.31
5000 132651 81.49 80.39 82.54 10.16 2.23

10000 132651 90.83 87.53 87.43 20.49 4.29
25000 132651 100.27 92.68 92.07 48.29 9.83
50000 132651 109.47 93.64 92.73 99.04 20.02

100000 132651 126.24 95.03 91.99 193.16 38.99

CHAPTER 3. EXAMPLES 99

Figure 3.52: B-spline series estimate of a 2-D standard normal distribution, n = 5000.

CHAPTER 3. EXAMPLES 100

Figure 3.53: Gridded interpolant estimate of a 2-D standard normal distribution, n = 5000.

CHAPTER 3. EXAMPLES 101

Figure 3.54: Difference between the B-spline series estimate and the gridded interpolant
estimate of a 2-D standard normal distribution, n = 5000.

Bibliography

Gehringer, K. R. (1990). Nonparametric probability density estimation using normalized
B-Splines. Master’s thesis, The University of Tulsa.

Gehringer, K. R. and Redner, R. A. (1992). Nonparametric probability density estimation
using normalized B-splines. Comm. Statist. Simulation Comput., 21(3):849–878.

Jones, M. (1993). Simple boundary correction for kernel density estimation. Statistics and
Computing, 3:135–146.

Redner, R. A. (1999). Convergence rates for uniform B-spline density estimators. I. One
dimension. SIAM J. Sci. Comput., 20(6):1929–1953 (electronic).

Redner, R. A. (2000). Convergence rates for uniform B-spline density estimators. II. multiple
dimensions. Nonparametric Statistics, 12:753–777.

Redner, R. A. and Gehringer, K. (1994). Function estimation using partitions of unity.
Comm. Statist. Theory Methods, 23(7):2059–2078.

102

	License
	Abstract
	List of Tables
	List of Figures
	Introduction
	What's New

	Using the bsspdfest toolbox
	Installing bsspdfest
	Using bsspdfest
	bsspdfest toolbox functions
	Probability density function estimation and evaluation
	Example scripts and supporting functions

	Errors and error messages
	Bug reporting

	Examples
	One-dimensional examples
	Standard normal distribution
	Mixture of 2 normal distributions

	Two-dimensional examples
	Standard normal distribution
	Mixture of 5 2-dimensional normal distributions

	Three-dimensional examples
	Standard normal distribution
	Mixture of 5 3-dimensional normal distributions

	Bounded domain examples
	One-dimensional bounded domains
	Two-dimensional bounded domains

	Efficient use of B-spline series estimators

