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Abstract

Forest policy makers increasingly desire the use of quantitative descriptions to define desirable forest characteristics as a target for forest

management. A framework for quantitative, multivariate target definition and assessment is described. The framework uses the joint distribution of

multiple forest structure attributes to describe a set of desired forest structures and to identify a target region. The target region contains the most

likely attribute values and its extent is controlled by choosing a probability of acceptance or acceptance level.

Nonparametric procedures implementing the target definition and assessment framework have been developed and are described. The

implemented procedures were used with a real data set representing 129 riparian stands in western Washington State, U.S.A. to define a three-

dimensional target for riparian forest management in the region using stand density, quadratic mean diameter, and average tree height.

A bootstrap simulation and a 50–50 split representative sample were used to evaluate the consistency of the implemented procedures by testing

the null hypothesis that attribute value distributions for a target data set and an observation data set, both randomly drawn from a common

distribution, were statistically indistinguishable. Chi-squared goodness of fit tests with a = 0.05 were used to compare observed mean acceptance

percentages from the bootstrap simulation and observed acceptance percentages from the 50–50 split representative sample to the targeted

acceptance levels of 95%, 90%, 80%, and 50%. Evaluation results indicated that the target definition and assessment procedures were consistent by

failing to reject the null hypothesis for each evaluation method, with p-values of p = 0.963 for the bootstrap simulation and p = 0.866 for the 50–50

split representative sample.
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1. Introduction

Forest policy makers increasingly desire the use of

quantitative descriptions of forest structure to specify a

reference condition identifying a set of desirable forest

attributes that are then used to define a target for managed

forests. Management objectives identified by such a reference

condition may be intended to provide regulatory compliance,

desirable habitat, clean water, aesthetically pleasing forests,

or other desirable characteristics, and may include attributes

measuring stand density, average tree size, species composi-

tion, competition indices, canopy closure, snag density, or

basal area or volume per hectare. The effective use of a

quantitative reference condition to define a target for

managed forests requires objective target definition and
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assessment procedures to determine whether the desired

forest structures have been achieved.

Interest in the target definition and assessment problem was

motivated by a need to identify a quantitative reference

condition and target representing unmanaged, mature, 80–200

year old riparian forest stands using multiple forest structure

attributes. The reference condition and target were needed to

support the development of riparian management templates for

small forest landowners in western Washington State, U.S.A.

(Zobrist et al., 2004, 2005). The riparian management

templates are being developed to provide small forest

landowners in westernWashington with management strategies

complying with the forest management rules enacted by

passage of the Forests and Fish law by Washington State in

1999 (Forests and Fish Report, 1999) and the final forest

practices rules, known as the Forests and Fish Rules (FFR),

enacted in 2001 (WFPB, 2001).
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1.1. Overview of the forests and fish rules (FFR)

The primary objectives of the FFR included provisions for

restoring and maintaining riparian habitat to support harvest-

able levels of fish and the long-term viability of other species,

compliance with the Endangered Species Act, meeting or

exceeding water quality standards defined by the Clean Water

Act, and maintaining the economic viability of the state’s forest

industry (Forests and Fish Report, 1999). The biological and

water quality objectives of the FFR for western Washington

were based, in part, on defining a quantitative desired future

condition (DFC) target for riparian forest stands along

potentially fish bearing streams. Unmanaged, mature, riparian

forests were identified as the DFC for western Washington

under the FFR, where a mature riparian forest stand was defined

as having a reference age of 140 years, the midpoint between 80

and 200 years (Forests and Fish Report, 1999; Fairweather,

2001; WFPB, 2001).

The base rules defined by the FFR for western Washington

State require three buffer zones along potentially fish bearing

streams: a 15.2 m no harvest core zone adjacent to the stream,

an inner zone where timber harvest is allowed subject to

restrictions ensuring the development of the DFC, and an outer

zone where up to 50 trees per hectare must be left after harvest.

The total buffer width is determined by the site potential tree

height and can vary from 27.4 to 61 m based on site class. The

inner zone extends from the outer edge of the core zone to either

67% or 75% of the total buffer width depending on stream size

(Forests and Fish Report, 1999; Ehlert and Mader, 2000;

Fairweather, 2001; WFPB, 2001). The base rules further

specify the DFC targets as site-class specific minimum live

conifer basal area per hectare (CBA) limits. Harvesting in the

inner buffer zone is permitted only if the post-harvest stand

conditions for the combined inner and core zones meet or

exceed the minimum CBA target when projected to an age of

140 years using a stand simulator (Forests and Fish Report,

1999; Fairweather, 2001; WFPB, 2001). Initial estimates of the

minimum CBA values were obtained for each of five Douglas-

fir (Pseudotsuga menziesii) site classes (King, 1966) based on

data from a sample of riparian stands obtained for western

Washington (Moffett et al., 1998; Fairweather, 2001).

The base rules of the FFR for western Washington State

apply to all private forest landowners in the region and they

have been shown to have a significant economic impact on

small forest landowners (Zobrist, 2003; Zobrist and Lippke,

2003). A provision in the FFR allows forest landowners to

propose alternative plans for riparian forest management so

long as the alternative plans provide at least the level of

resource protection provided by the base rules (Forests and Fish

Report, 1999; WFPB, 2001). The inclusion of alternative plans

in the FFR was intended to provide a mechanism for small

forest landowners to obtain relief from the base rules.

Alternative plans are being used by landowners as a means

to develop site specific riparian management strategies and to

develop management templates for small forest landowners in

western Washington State that comply with the FFR (Zobrist

et al., 2004, 2005).
The base rules of the FFR for western Washington State are

intended to provide protection or restoration of functions

provided by riparian forests that ‘‘include bank stability, the

recruitment of woody debris, leaf litter fall, nutrients, sediment

filtering, shade, and other riparian features that are important to

both riparian forest and aquatic system conditions’’ (Forests

and Fish Report, 1999). The base rules, however, do not directly

quantify the level of resource protection that they provide.

Achievement of the site-class specific minimum CBA targets at

age 140, the DFC for the FFR base rules, was assumed to

provide a sufficient level of resource protection. The level of

resource protection provided by an alternative plan, in contrast,

is assessed by a multi-agency interdisciplinary (ID) review

team comprised of individuals having the expertise necessary to

perform the assessment (WFPB, 2001).

The use of ID review teams to determine the level of

resource protection for all alternate plans is time consuming

and costly for small forest landowners and the agencies

providing the staff for the ID review teams, and is ultimately not

sustainable (Zobrist et al., 2004, 2005). Further, the lack of a

quantitative target or description of the level of protection

provided by the base rules may raise concerns regarding the

scientific objectivity of an alternate plan assessment performed

by an ID review team. These two factors make the long term

implementation of the current alternate plan review process

problematic. This situation provided an opportunity to develop

a framework for quantitative target definition and assessment,

within the paradigm established by the FFR, that could be used

to readily identify alternate plans that were consistent with a

nominal, quantitatively defined set of desired forest conditions.

Within this context, targets are specified by identifying a

reference condition that quantitatively describes a set of

desirable riparian forest structures. The forest structures

identified by the reference condition are then used as an

indirect measure of the resource protection provided by the

sampled riparian forests. Assessments are then performed by

testing whether the structure of a managed forest stand is

similar to the targeted forest conditions.

1.2. Forest structure, target definition, and assessment

Direct measures of forest structure, e.g., stand density,

average tree size, basal area per hectare, species composition,

etc., were emphasized as the basis for defining the quantitative

management targets. Direct forest structure measurements were

used to represent the desired forest conditions for four primary

reasons. First, forest structure characteristics are easily

measured and are strongly related to stand development

processes (Oliver and Larson, 1996). Second, forest structure

characteristics are directly manipulated by silvicultural

practices, e.g., density management to obtain forest manage-

ment objectives. Third, forest structure characteristics provide

surrogate measures for the functions provided by forests or

habitat availability that may be difficult to measure directly

(Franklin et al., 2002). Fourth, forest structure characteristics,

including individual tree measurements, provide the primary

information used to model and project forest stand development
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(Vanclay, 1994; Hann et al., 1997; Donnelly, 1997; McCarter

et al., 1998; McCarter, 2001).

Identifying a representative set of desired forest structures

for use as a reference condition is an essential component of an

effective quantitative target definition and assessment process:

you must know what you are aiming for. The nature and scope

of the reference condition will vary depending on specific

restoration or management objectives, but it should reflect the

inherent variability and multidimensional nature of the forest

ecosystems represented by the desired forest conditions. The

multidimensional nature of forest ecosystems may be directly

incorporated into a representative reference condition by using

multiple, quantitative attributes to describe desirable forest

structures, and the variability may be incorporated by

accounting for the distribution of the forest structure attributes

specified by the reference condition.

The distribution of desirable forest structures specified by a

reference condition plays a fundamental role in the quantitative

target definition and assessment framework that has been

developed. The distribution of desirable forest structures

provides the natural way to obtain statistically consistent

target definition and assessment procedures. In this context

statistical consistency requires that the target definition and

assessment procedures be compatible, or derived from the same

distribution, and that the shape of the underlying distribution is

compatible with the shape of the distribution of desirable forest

structures. Statistical consistency becomes particularly impor-

tant when using multiple attributes to specify the reference

condition, as the shape of the distribution may be unknown or

difficult to determine.

Given a reference condition representing the desired forest

structure attributes and the distribution of those attributes, a

target may be defined by identifying an acceptance region

within the domain of the joint distribution. The extent or

scope of the acceptance region target is controlled by using a

probability of acceptance and the probability contours of the

distribution representing the forest structures in a reference

condition to select the most likely portion of the domain of

the distribution. Larger acceptance probabilities include more

of the domain of the distribution in the target, excluding the

‘‘tails’’ and least likely values, while smaller acceptance

probabilities produce more focused targets, emphasizing the

most likely values. Assessments may then be performed by

simply testing whether the structure attribute values for a

particular forest are within the acceptance region target or

not.

An acceptance region target obtained from the joint

distribution of multiple forest structure attributes using a

probability of acceptance provides simultaneous ranges of

acceptable values for all of the attributes being considered,

increasing the likelihood that compatible assessment criteria

are defined. Using multiple quantitative attributes to describe

the desired forest structures in a reference condition provides a

more detailed description of those structures than could be

obtained using any single structure attribute or attribute

summary, such as the mean and standard deviation, increasing

the likelihood that the desired forest structures are actually
represented by those being targeted. Emphasizing the joint

distribution of multiple, quantitative forest structure attributes

and the use of a probability derived acceptance region should

enable the development of objective targets for forest

management that are achievable and consistent with regulatory

or management objectives.

1.3. Representing the distribution of desirable forest

structures

Two general statistical approaches are available for

representing the joint distribution of desirable forest structures

identified by the reference condition: a parametric approach

and a nonparametric approach (Duda and Hart, 1973; Silver-

man, 1986; Thompson and Tapia, 1990; Thompson, 2000). The

parametric approach assumes a particular functional form for

the distribution a priori, and imposes this distribution on the

forest structure attribute values in a reference condition. The

nonparametric approach, on the other hand, does not assume a

specific functional form for the distribution a priori, but uses

available data directly to create an empirical representation of

the joint distribution of forest structure attribute values in a

reference condition, allowing the data to speak for itself in an

analysis (Duda and Hart, 1973; Silverman, 1986; Thompson

and Tapia, 1990; Thompson, 2000).

A nonparametric approach was chosen to represent the joint

distribution of forest structure attributes for several reasons.

First, the nonparametric approach automatically provides the

required statistical consistency, since a nonparametric

approach creates an approximation to the actual joint

distribution as represented by the available data. Second,

methods for nonparametric probability density estimation in

one or more dimensions are readily available, straightforward

to use, and the underlying methods are easily adapted to a

variety of situations (Silverman, 1986; Thompson and Tapia,

1990; Gehringer, 1990; Gehringer and Redner, 1992; Redner

and Gehringer, 1994; Redner, 1999). Third, nonparametric

methods may permit the data to be used directly in an analysis

without the intermediate step of computing the joint

distribution (Thompson, 2000). Finally, an abundance of data

is typically available for forest management and policy

decision making, a situation that readily lends itself to

nonparametric approaches.

1.4. Objectives and application

A framework for developing statistically consistent target

definition and assessment procedures is described. The

framework may be used to specify structure-based targets of

any dimension for use in forest management. A straightforward

nonparametric implementation of the target definition and

assessment procedures is also described and demonstrated. The

procedures were used to define a target for riparian forest

management in western Washington State using a three-

dimensional reference condition, consisting of stand density

and average tree size (diameter and height), represent a set of

desirable forest structures.



K.R. Gehringer / Forest Ecology and Management 223 (2006) 125–138128
2. Methods

Let K � 1 be the number of quantitative attributes used to

describe the desirable forest structures represented by a

reference condition, and let x = [x1, x2, . . ., xK]
T be the vector

representing those attributes, where each xk, k = 1, 2, . . ., K,
represents the value of an attribute, and T indicates the

transpose of the vector. The joint distribution of desirable forest

structure attributes is, then, described by some unknown

probability density function (PDF) f(x) over the domain of the

forest structure attribute vectors x.

The unknown PDF f(x) was assumed to be continuous and

bounded to simplify the presentation. That is, f(x) � C for some

constant 0 < C < +1, allowing probability levels to be

matched exactly and guaranteeing the existence of a finite

maximum value for the PDF. The domain of the PDF f(x) was

also assumed to be bounded, that is, the set of points x such that

f(x) > 0 was bounded to guarantee that probability contours

derived from the PDF were finite.

2.1. Target definition and assessment procedures

Given the PDF f(x) describing the distribution of desirable

forest structures representing a reference condition, the natural

way to define an acceptance region or target for those forest

structures is to use the likelihood contours or level sets of the

PDF f(x). The most likely attribute values, those with the largest

PDF values, form the center of the acceptance region or target.

The extent of an acceptance region or target is defined by

specifying a percentage acceptance level for the probability

represented by the acceptance region, or the probability of

acceptance. The probability of acceptance implicitly defines a

contour of the PDF by equating the probability contained

within a contour and the probability of acceptance using the

most likely portion of the domain of the PDF. That portion of

the domain contained within the contour for a specified

acceptance level, then, defines the acceptance region. This is

similar to the use and interpretation of the confidence level and

confidence region in statistical hypothesis testing (Duda and

Hart, 1973; Mardia et al., 1979; Zar, 1996).

Letting 1 � p be the desired probability of acceptance, the

probability of rejection is then p, and the (1 � p)100%

acceptance region or target is defined in Eq. (1), where

c2[0,maxx f(x)] is a value defining the (1 � p)100% level set or

contour of the PDF f(x) for some p2[0,1].

T1� p ¼
�
xj f ðxÞ� c and

Z
fyj f ðyÞj � cg

f ðyÞ dy ¼ 1� p

�
(1)

In the target definition, the condition f(x) � c, guarantees that

the most likely values from the domain of the PDF f(x) are used

in the acceptance region target. The second condition,R
fyj f ðyÞ� cg f ðyÞ dy ¼ 1� p, guarantees that the acceptance

region target obtains the desired (1 � p)100% acceptance level.

The values of x such that f(x) = c define the critical contour for

the target T1�p.
An assessment procedure consistent with this target

definition simply determines whether an attribute vector y is

contained within the target region T1�p defined by the desired

(1 � p)100% acceptance level. If y2T1�p, then y is statistically

indistinguishable from the target at the (1 � p)100% accep-

tance level and is considered acceptable. If y=2T1�p, then y is

statistically different from the target at the (1 � p)100%

acceptance level and is considered unacceptable.

2.2. Implementation

For the implementation, the unknown PDF f(x) was also

assumed to be unimodal and symmetric. The critical contours

for the target T1�p derived from the PDF f(x) are then given by

circles defined by standardized distances from a central value

xc. A distance based target may therefore be defined by

determining a standardized critical distance dcrit from the

central value xc for a specified (1 � p)100% acceptance level.

The central value xc may be the mean or mode of the

distribution, which are coincident under the assumption of

symmetry. If the symmetry assumption does not hold, the

mode, as the most likely value, should be used as the central

value in the target definition and assessment procedures.

In an assessment, the critical distance dcrit determines

whether an attribute vector is indistinguishable from a distance

based target Td
1� p. The superscript d indicates that the

(1 � p)100% target is defined using the PDF fd(x) or the

CDF Fd(x) based on the standardized distances obtained using a

distance function d(x, xc), rather than on the contours of the

actual PDF f(x) (Mardia et al., 1979). An attribute vector y is

considered acceptable relative to the distance based target Td
1� p

if its standardized distance from the central value dy is less than

the critical distance, dy < dcrit. An attribute vector is considered

unacceptable otherwise.

Let X = {x1, x2, . . ., xM} be a set of attribute vectors

xi = [xi1, xi2, . . ., xik]
T containing values for the K forest

structure attributes of interest for a collection of M forest

stands that are representative of the desired forest conditions.

The M attribute vectors in the set X are used to represent the

continuous, unimodal, symmetric PDF f(x) and, subsequently,

to define the CDF Fd(x) and targets Td
1� p. The set X defines the

reference condition, and will be called the target data set. Let

Y = {y1, y2, . . ., yN} represent a set of attribute vectors

yj = [yj1, yj2, . . ., yjK]
T containing values for the K forest

structure attributes of interest for a collection of N observed

forest stands that are to be assessed relative to the target data set

X. The set Y will be called the observation data set.

The K-dimensional empirical distribution for the M forest

structure attribute vectors xi in the target data set X was

assumed, and the distance function

dðx; xcÞ ¼ ðx� xcÞTS�1
xc ðx� xcÞ (2)

was used, where S�1
xc is the inverse of the variation matrix Sxc

centered at xc, given by

Sxc ¼
1

M � 1

XM
r¼1

ðxr � xcÞðxr � xcÞT: (3)
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When the central value used is the mean, the variation matrix

Sxc is the covariance matrix and the distance is the Mahalanobis

distance (Duda and Hart, 1973; Mardia et al., 1979).

Critical distances dcrit for a (1 � p)100% acceptance level

and the target data set X were computed using the empirical

CDF F̂
dðxÞ as an approximation to the CDF of standardized

distances Fd(x). The critical distance was computed in four

steps. First, the central value xc and the inverse of the variation

matrix S�1
xc were computed from theM attribute vectors xi in the

target data set X. Second, the standardized distances xdi ¼
dðxi; xcÞ were computed for the attribute vectors in the target

data set. Third, the index of the critical standardized distance

icrit was computed as

icrit ¼
1 if p ¼ 0;
b ð1� pÞM c if 0< p< 0

M if p ¼ 1;

8<
: ; (4)

where bxc is the floor function, returning the largest integer less
than or equal to x. Finally, the critical distance was assigned the

standardized distance from the target data set identified by the

index of the critical distance obtained in Eq. (4)

dcrit ¼ xdðicritÞ; (5)

where xdðiÞ denotes the ith order statistic, xdð1Þ � xdð2Þ � � � �
leqxdðMÞ, for the set of standardized distances in the target data

set.

Assessments of attribute vectors yj in the observation data set

Y, relative to the target data set X, were then performed in two

steps. First, standardized distances ydj ¼ dðy j; x
cÞ from the

central value xc were computed for the attribute vectors in the

observation data set. Second, the observed distances ydj were
compared to the critical distance dcrit. If ydj < dcrit, then the

observed attribute vector was statistically indistinguishable

from the target data set using a (1 � p)100% acceptance level,

and was considered acceptable. Attribute vectors were

considered unacceptable otherwise.

If insufficient data were available for use of the nonpara-

metric approach, for example due to the desire to manage for a

rare or nonexistent forest structure, or if a nonparametric

approach was not acceptable, then the distribution of desirable

forest structures could be represented using a parametric

distribution. The use of a parametric distribution is consistent

with the target definition and assessment framework described

but would require customized numerical procedures for

identifying the critical probability contours of the target. The

multivariate normal distribution could be used with attribute

vectors of any dimension, and the SBB distribution (Schreuder

and Hafley, 1977) or the bi-variate generalized beta distribution

(Li et al., 2002) could be used to represent two-dimensional

attribute vector distributions.

3. Application

The performance of the target definition and assessment

procedures was evaluated by applying them to the problem of
defining a target using multiple forest structure attributes for

riparian zone management in western Washington State.

Following the paradigm established by the FFR, unmanaged

riparian forest stands having an average age of dominant and

codominant trees that was at least 80 years were identified as the

reference condition of desired riparian forest structures. This

target definition was chosen for compatibility with the FFR and

to allow the structures frommature andold-growth riparian forest

stands to contribute to the reference condition. Structures

represented byyoung riparian standswere intentionally excluded

from the target as they were considered to be readily attainable

with typical commercial management and were not of concern.

The forest structure attributes used to define the riparian

management target were stand density measured as trees per

hectare (TPH), quadratic mean diameter (QMD), and average

tree height (H). These forest structure attributes were chosen

because they were straightforward to measure and simulate

with forest growth models, and they are directly affected by

management activities, e.g., thinning. Rather than using the

combined attribute basal area per hectare (BA), as in the FFR,

the individual attributes TPH and QMD were used to allow

stand density to directly influence the discrimination between

desirable and undesirable riparian forest structures. The

inclusion of separate stand density and size components in

the target was considered necessary since similar BA values

may be produced by stands having a large number of small trees

or by stands having a small number of large trees, making BA

alone a poor discriminator between these two structural

conditions. Average tree height was included in the target since

tree height influences stream shading and the potential for

production and recruitment of large woody debris from an

adjacent stand into a stream (Bilby and Ward, 1989, 1991;

Robison and Beschta, 1990; Beechie et al., 2000; Welty et al.,

2002). The use of these three attributes was expected to provide

at least a first order approximation to the level of resource

protection provided by the riparian forest structures identified

by the targeted reference condition.

Two methods were used to evaluate the potential effective-

ness of the target definition and assessment procedures. First, a

bootstrap simulation evaluation was performed using randomly

selected subsets of a larger data set to define target and

observation data sets. This evaluation was intended to

characterize the average behavior of the target definition and

assessment procedures for a variety of similar target and

observation data sets. Second, a 50–50 split evaluation was

performed where a randomly selected representative subset of a

larger data set was used to specify a target, that was then used to

perform an assessment using the remaining data as observa-

tions. This evaluation was used to demonstrate the effectiveness

of the target definition and assessment procedures within the

context of their expected use.

Target and observation data sets used in the evaluations have

the same underlying distribution: the empirical distribution of

the larger data set from which they were drawn. Consistency of

the target definition and assessment procedures implies that the

a priori acceptance levels and empirical acceptance percentages

computed for an assessment should agree. The agreement
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between the a priori acceptance levels and computed

acceptance percentages was evaluated by using chi-squared

goodness of fit tests. The null hypothesis that the distributions

of the target and observation data sets were statistically

indistinguishable was tested by comparing the a priori

acceptance levels to computed mean acceptance percentages

for the bootstrap evaluation and to the computed acceptance

percentages for the 50–50 split representative sample evalua-

tion. Assessments were performed for acceptance levels of

95%, 90%, 80%, and 50%. For each assessment an estimate of

the mode of the target data set was used as the central value xc in

the target definitions. Mode estimates were computed using the

mean update algorithm (Thompson, 2000). Acceptance

percentages were computed as

acceptance ð%Þ ¼
�
Naccept

N

�
100%; (6)

where Naccept is the number of acceptable observations for a

particular target data set, observation data set, and acceptance

level, and N is the number of observations in the observation

data set being assessed. The goodness of fit tests were per-

formed using an a-level of 0.05, n = 3 degrees of freedom for

the four acceptance levels, and the critical chi-squared value of

x2
crit ¼ 7:8147.

3.1. Bootstrap evaluation

The bootstrap procedure is a resampling procedure that is

commonly used to estimate values for parameters and to

approximate their distributions (Efron, 1982; Efron and

Tibshirani, 1998; Thompson, 2000; Davison and Hinkley,

1997). The underlying premise of the bootstrap procedure is

that the distribution of parameter estimates may be determined

by repeatedly estimating parameter values for randomly

selected subsets of a larger data set. The mean and standard

deviation for the parameter values may then be computed using

the set of estimated values, providing an empirical approxima-

tion to the variability of the parameter estimates for a particular

problem (Efron, 1982; Efron and Tibshirani, 1998; Thompson,

2000; Davison and Hinkley, 1997).

The algorithm used to compute mean acceptance percen-

tages for the bootstrap evaluation of the target definition and

assessment procedures is described by the following four steps.

Notation is similar to that of Efron (1982). Let G(X, Y, a) be a

function returning an acceptance percentage computed using

the target definition and assessment procedures described for a

target data set X, an observation data set Y, and an acceptance

level a. Given a set of attribute vectors representing the desired

forest conditions, a set of acceptance levels al, l = 1, 2, . . ., L, a
number B of bootstrap trials, and a bootstrap sample size NB,

mean acceptance percentages and standard deviations were

computed for the acceptance levels al using the following steps:
� S
tep 1. Randomly select, with replacement, a target data set

Xb and an observation data set Yb, each containing NB

attribute vectors from the set of available attribute vectors.
� S
tep 2. Compute the acceptance percentage using the

bootstrap target and observation data sets for each acceptance

level al, plb = G(Xb, Yb, al).
� S
tep 3. Repeat Steps 1 and 2 for b = 1, 2, . . ., B, obtaining
estimated acceptance percentages p11, p12, . . ., plB for each

acceptance level al.
� S
tep 4. Compute mean values and standard deviations for the

acceptance percentages as p̄l ¼ 1
B

PB
b¼1 plb and sl ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
B�1

PB
b¼1ð plb � p̄lÞ2

q
for each acceptance level al using

the bootstrap estimates of the acceptance percentages.

A value of B = 250 was used for the number of bootstrap

trials with L = 4 acceptance levels. The bootstrap sample size

NB used for the target and observation data sets was based on

the amount of available data and is defined in Section 3.3.1.

3.2. 50–50 split representative target evaluation

Given a set of attribute vectors representing the desired forest

conditions a representative subset containing approximately

50% of the available attribute vectors was randomly selected and

assigned to the target data set X. The remaining attribute vectors

were assigned to the observation data set Y. Acceptance

percentages were computed for assessments at each of the four

acceptance levels. The number of attribute vectors used to define

the target data set,M, was based on the amount of available data,

and its value, as well as the number of attribute vectors in the

observation data set, are defined in Section 3.3.2.

3.3. Data description

The riparian forest data used to define targets for the

evaluations were obtained from the Forest Inventory and

Analysis (FIA) program of the U.S. Forest Service. The data

were collected by the Pacific Resource Inventory, Monitoring,

andEvaluation (PRIME) programof the FIA and represent forest

inventory data collected from all ownerships except national

forest and reserved areas (Woudenberg and Farrenkopf, 1995).

The FIA PRIME database was used in these analyses for two

reasons. First, these data were readily available, and second, the

FIA PRIME database provided the majority of the data used in

the original desired future conditions analysis for the FFR

(Moffett et al., 1998; Fairweather, 2001).

The FIA PRIME data were collected using a stratified

sampling design with two levels: the plot and subplot. Each plot

contained multiple subplots whose measurement data were to

be aggregated to estimate plot level attributes (Woudenberg and

Farrenkopf, 1995). The number of subplots per plot has varied

over time due to changes in the sampling protocols, with five

subplots being the standard since 1994 (Woudenberg and

Farrenkopf, 1995). Individual tree data from the PRIME

database used in these analyses were: tree age, tree canopy

position, tree DBH, tree height, tree species, and the tree

expansion factor or the number of trees per hectare represented

by each sampled tree. Tree expansion factors were obtained
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from the FIA PRIME database and were computed using fixed

radius or variable radius subplots depending on tree size.

Variable radius subplots were based on a metric BAF 7 prism

(Hiserote and Waddell, 2004).

The set of attribute vectors representing the desired riparian

forest structures for the target definition and assessment

evaluations were computed from individual tree data selected

from the FIA PRIME database using the following six criteria:
(1) T
he subplot was classified by the FIA as timberland.
(2) T
he subplot had not been treated since the last FIA

inventory.
(3) T
he subplot was within 65 m of a stream.
(4) T
heaverageageofdominantandcodominant trees (AgeD/CD)

was at least 80 years for each subplot.
(5) T
ree DBH values were at least 10.2 cm.
(6) T
ree height values were positive.
These criteria were chosen for their compatibility with the

criteria used to select the data for the original FFR data analyses

(Moffett et al., 1998). The final criterion provided a filter to

remove trees having a DBH value but no height value. For

convenience these trees were simply dropped from the

inventory used.

A total of 129 subplots from 75 unique plots containing 791

sample trees were obtained using these criteria. The number of

subplots obtained for each plot varied from one to five with the

majority of plots being represented by only one or two subplots.

This made an analysis at the plot level infeasible. The selected

subplots, however, were all from plots having five subplots

distributed over an area of approximately 2.7 ha, with each

subplot representing approximately 0.5 ha. Given the relatively

large areas covered by the subplots, tree expansion factors were

multiplied by a factor of five, scaling the subplot data to obtain

values per hectare. Scaling the subplot data increased the

observed variability, since the subplot data were not aggregated.

The greater variability was associated with subplots that had

low or high stand densities, relative to the stand densities of

their respective plots, and the magnification of the character-

istics of these subplots produced by the scaling.

While not independent, the subplot data still provided a

representative, unbiased sample of riparian forest stands. The

use of the subplots in this way is similar to the practice of

sampling multiple reaches along the same stream to

characterize the stream channel or the properties of the forest

adjacent to the stream. The second data selection criterion did

not guarantee that selected subplots were unmanaged. With

these data it was not possible to identify subplots that were

treated, thinned or harvested, prior to the last inventory taken 10

years previously. A comparison of the forest structure attributes

represented in the scaled data set with values obtained from

other regional data sets (Hiserote and Waddell, 2004) indicated

that the attribute values used here were consistent with those

computed from other data sets in both their ranges and

distributions. These data were considered to be sufficient for

demonstrating the target definition and assessment procedures

and for the development of a riparian management target.
For each of the 129 subplots values were computed for

AgeD/CD, TPH, QMD, and H using the following procedures.

Let S be the number of subplots and Ns be the number of trees

on subplot s, for s = 1, 2, . . ., S. Define agest as the age of tree t
on subplot s, dbhst as the DBH of tree t on subplot s, hst as the

height of tree t on subplot s, and tphst as the TPH represented by

tree t on subplot s. Further, defineDst to be an indicator that tree

t on subplot s is a dominant or codominant tree, as in Eq. (7)

Dst ¼
1 if tree t on subplots is a dominant or

codominant tree;

0 otherwise:

8<
: (7)

With this notation, the average ages of the dominant and

codominant trees for each subplot were computed using Eq. (8)

AgeD=CDs ¼
PNs

t¼1 agest tphst DstPNs

t¼1 tphst Dst

(8)

and the stand structure attributes TPH, QMD, and H for each

subplot were computed using the formulas in Eqs. (9)–(11),

respectively. These values were then used to define the set of

available attribute vectors. A numerical summary of the stand

attributes for the 129 riparian subplots appears in Table 1

TPHs ¼ 5
XNs

t¼1

tphst; (9)

QMDs ¼
�PNs

t¼1 dbh
2
st tphstPNs

t¼1 tphst

�1=2

; (10)

Hs ¼
PNs

t¼1 hst tphstPNs

t¼1 tphst
: (11)

3.3.1. Data for the bootstrap evaluation

The bootstrap evaluation target and observation data sets, Xb

and Yb, were defined by randomly selecting with replacement

NB attribute vectors from the 129 available attribute vectors for

each bootstrap trial, b = 1, 2, . . ., B. To ensure that the target

and observation data sets would be comparable and similar to

the larger data set, on average, a value of NB = 64 was chosen as

the size of the bootstrap samples, selecting approximately half

of the available stand structure data for the target and

observation data sets in each bootstrap trial.

3.3.2. Data for the 50–50 split representative target

evaluation

The 50–50 split representative sample evaluation target and

observation data sets were chosen so that they each contained

approximately half of the available stand structure data. The

size of the target data set was assigned a value of M = 64.
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Table 2

Numerical summary of the 64 randomly selected riparian subplots used to

define the target data set

Attribute Mean S.D. Minimum Median Maximum

AgeD/CD (years) 127.1 60.6 80.6 99.9 341.2

TPH 275.6 265.6 11.0 222.4 1310.3

QMD (cm) 61.4 26.0 19.5 60.1 143.3

H (m) 25.6 17.0 1.0 20.0 65.0

Table 4

Acceptance percentages and chi-squared goodness of fit test results

Acceptance level Acceptance percent

Bootstrap 50–50 split

Mean S.D.

95% 92.4 4.6 96.9

90% 87.2 6.0 89.2

80% 78.0 7.2 83.1

50% 46.6 7.8 43.1

x2
obs

0.283 0.730

p-value 0.963 0.866

The goodness of fit tests were performed using a = 0.05, n = 3 degrees of

freedom, and the critical value x2
crit ¼ 7:8147.

Table 1

Numerical summary of the 129 available riparian subplots

Attribute Mean S.D. Minimum Median Maximum

AgeD/CD (years) 133.8 75.7 80.6 96.9 424.4

TPH 279.7 280.1 11.0 184.9 1460.5

QMD (cm) 62.3 25.9 19.5 60.5 158.3

H (m) 31.7 10.0 10.1 32.1 58.3
Random subsets of the 129 available attribute vectors were

selected without replacement until a visual inspection indicated

that the target data werewell distributed throughout the range of

the available data, as indicated by a three-dimensional plot of

TPH, QMD, and H. These attribute vectors were then assigned

to the target data set X. Once the target data set was determined

the remaining N = S � M = 65 attribute vectors were assigned

to the observation data set Y. Numerical summaries of the stand

attribute values used for the target and observation data sets are

provided in Tables 2 and 3, respectively.

4. Results

Mean acceptance percentages and standard deviations

computed for the bootstrap evaluation and acceptance

percentages computed for the 50–50 split representative

sample evaluation are presented in Table 4 along with the

results of the chi-squared goodness of fit tests. A strong

correspondence between the a priori acceptance levels and the

computed acceptance percentages clearly exists. The computed

acceptance percentages decreased as the acceptance levels

decreased, with mean values of 92.4%, 87.2%, 78.0%, and

46.6% for the bootstrap evaluation and the 95%, 90%, 80%, and

50%, acceptance levels, respectively. Acceptance percentages

for the 50–50 split representative sample evaluation had

corresponding values of 96.9%, 89.2%, 83.1%, and 43.1% for

the four acceptance levels.

Mean acceptance percentages for the bootstrap evaluation

were all less than their respective acceptance levels. Two of the
Table 3

Numerical summary of the 65 randomly selected riparian subplots used to

define the observation data set

Attribute Mean S.D. Minimum Median Maximum

AgeD/CD (years) 140.3 88.1 80.9 96.7 424.4

TPH 283.7 295.7 11.0 173.0 1460.5

QMD (cm) 63.2 26.1 23.2 60.7 158.3

H (m) 23.8 17.0 1.0 20.0 65.0
acceptance percentages for the 50–50 split representative

sample evaluation were greater than their respective acceptance

levels while the other two were less than their respective

acceptance levels. The variability of the acceptance percentages

increased as the acceptance level decreased, as indicated by the

standard deviations from the bootstrap evaluation which

increased from a value of 4.6% for the 95% acceptance level

to a value of 7.8% for the 50% acceptance level. All of the

computed acceptance percentages were within one bootstrap

standard deviation of their respective acceptance levels.

The chi-squared goodness of fit tests indicated that there

were no statistically significant differences between the a priori

acceptance levels and the computed acceptance percentages for

the bootstrap and 50–50 split representative sample evaluations.

The mean acceptance percentages for the bootstrap evaluation

had an observed chi-squared value of 0.23 ( p = 0.963), and the

50–50 split representative sample evaluation had an observed

chi-squared value of 0.730 ( p = 0.866).

5. Discussion

Evaluation results were favorable and were in agreement

with expectations. Several characteristics of the results and

their relationships to the implemented target definition and

assessment procedures, however, warrant further discussion.

Values and trends observed in the computed acceptance

percentages for the bootstrap evaluation and the 50–50 split

representative sample evaluation are considered first. The

potential impacts of deviations from the assumptions on the

performance of the target definition and assessment procedures

are then mentioned, followed by a discussion of the statistical

consistency and potential robustness of the procedures. Finally

a brief description of several possible enhancements to the

target definition and assessment procedures are presented.

5.1. Target definition and assessment evaluation

Mean acceptance percentages from the bootstrap evaluation

were all less than their respective acceptance levels. This is

consistent with the implementation which selects a critical

distance for a (1 � p)100% acceptance level by truncating the

value (1 �p)M, for p2(0,1), rather than by rounding. The actual
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acceptance probability used to select a critical distance and

perform an assessment was, therefore, less than or equal to the a

priori acceptance level on average. This implies that the target

definition and assessment procedures, as implemented, are

conservative. Marginal attribute vectors, those located within

the actual acceptance region but near the critical distance or

contour, will, on average, be identified as unacceptable more

frequently than would be the case for a procedure that used an

exact match of the acceptance level. This behavior is desirable

for many applications since forest structures that are marginal,

relative to the target, may require a more detailed assessment.

Standard deviations for the bootstrap evaluation acceptance

percentages increased as the acceptance level decreased. This

phenomenon may be explained by considering the expected

degree of overlap in the probability contours of the approximate

distributions for two random samples drawn from the same

distribution. For large acceptance levels, the approximate

distributions have a large expected degree of overlap, and small

differences in their locations and shapes will have little impact

on the degree of overlap for the probability contours. For small

acceptance levels, the two approximate distributions have a

small expected degree of overlap, and small differences in their

locations and shapes can have a much greater impact on the

degree of overlap for the probability contours. As the

acceptance level decreases, the expected degree of overlap

for the two approximate distributions decreases, and the

uncertainty in the degree of overlap for the probability contours

increases. This then increases the variability of the probability

contour overlap and produces larger acceptance percentage

standard deviations for the smaller acceptance levels.

Variability in the computed acceptance percentages may

also have been inflated for all acceptance levels by the use of a

small target sample size. The bootstrap sample size of NB = 64

was relatively small for representing a three-dimensional target

with high variability. The empirical distribution derived from a

set of attribute vectors for any target data set provides only an

approximation to the actual distribution, and the obtainable

resolution of that approximation is limited by the amount of

available data, which then affects the resolution of the critical

distance and probability computations. A decrease in the

resolution of the critical distance and probability computations

for small sample sizes increases the uncertainty in the

computed critical distances and probabilities, particularly for

regions of low probability. Larger target data sets would permit

a higher degree of resolution, and therefore provide a better

approximation to the distribution used for the critical distance

and probability computations.

The 50–50 split representative sample results were also in

line with expectations. The only pattern identified in the over

predicted or under predicted acceptance percentage values was

that the differences between the computed values and the a

priori acceptance levels were larger for the lower acceptance

levels. Differences between the computed acceptance percen-

tages for the 80% and 50% acceptance levels were 3.1% and

�6.9%, respectively, while the differences were only 1.9% and

�0.8% for the 95% and 90% acceptance levels. The variability

in these acceptance percentages is attributable to the relatively
small sample sizes used for the target and observation data sets

and the fact that more restrictive targets with smaller

acceptance levels are subject to greater variability. In practice,

all of the available data would have been used to define a target

data set, not just the smaller subset used here.

5.2. Deviations from the assumptions

The empirical probabilities and critical distances used in the

target definition and assessment procedures assumed that the

unknown distribution was continuous, symmetric, and unim-

odal. If any of the assumptions are not valid for a particular

application, the target definition and assessment results may be

incorrect or misleading. The severity of the consequences for a

failure in an assumption varies: a failure of the unimodal

assumption will generally be much more severe than a failure of

the symmetry assumption, with a failure of the continuity

assumption having the least impact.

5.2.1. Target distribution is not unimodal

If the target distribution is multimodal, having multiple

peaks or modes in its PDF, then no single value suffices to

characterize the center of the distribution for the implemented

procedures. Further, critical distances would not be derivable

from a single probability contour, but would need to be derived

through a consideration of multiple, possibly disjoint prob-

ability contours or probability contours having arbitrary shapes

that are not compatible with the implemented procedures.

These issues may be resolved by using more general methods of

determining probabilities and critical contours than those

implemented and used here. Use of the target definition and

assessment procedures described here with target data that may

be from a multimodal distribution is therefore not recom-

mended.

Given that a target data set is intended to represent the

distribution of a specific set of desired forest structures, it seems

reasonable to expect that a unimodal target could be produced.

If a proposed target data set contained multiple modes, this may

indicate that the sample size was not sufficient or that there

were multiple distinct sub-targets that could be separately

identified and targeted. By isolating the distinct modes in this

way, multiple modes in a target distribution may be treated as

separate unimodal distributions for the purposes of assessments

relative to the characteristics of each mode. In this context, an

attribute vector would be acceptable if it were located within

the critical contour for one of the modes or if it had a distance

from the center of one mode that was less than the critical

distance for that mode. The specialization of the implemented

target definition and assessment procedures to unimodal

distributions should not be a significant handicap for its use,

particularly given the degree of control that may be exercised

when specifying a target data set for a particular application.

5.2.2. Target distribution is not symmetric

If the target distribution is unimodal but not symmetric its

mean or median values may not provide an adequate central

value for the target definition and assessment procedures. For
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example, the mean value of a one-dimensional skewed

distribution is shifted away from the mode in the direction

of the long tail. Using the mean as the central value in the target

definition and assessment procedures would introduce a bias

relative to the most likely values and would not provide

probability contours that were consistent with the distribution.

The implications of a lack of symmetry are more interesting

for multidimensional distributions. Consider a unimodal two-

dimensional distribution with nonnegative values skewed such

that large values in one dimension are associated with small

values in the other dimension, giving a banana shape to the

distribution, e.g., the distribution of stand density and average

diameter. In this case, the mean value would appear near the

convex, curved region between its stem and tip. Using the mean

value in the target definition and assessment procedures would

produce probability contours that were not consistent with the

distribution. The mean value may, therefore, not provide an

adequate central value for use with the target definition and

assessment procedures when they are used with nonsymmetric

distributions. A more appropriate central value, such as an

estimate of the mode, should be used for these distributions or

when the shape of the distribution is not known or difficult to

determine.

The central value plays a fundamental role in the empirical

probability and critical distance computations, and the target

definition and assessment procedures work best if the central

value of the target is an estimate of the most likely value or

mode of a unimodal distribution. The extent of a target is then

expanded or contracted by including the values closest to the

mode by increasing or decreasing the acceptance level. A

central value that is close to the mode is therefore critical if

restrictive targets are desired, e.g., targets having acceptance

levels less than 80%. Having a central value close to the mode is

not as critical for less restrictive targets, those having

acceptance levels greater than 80%, but it is still important.

The characteristics of an attribute vector distribution clearly

influence the selection of a central value and its probability

contours and must be considered when using the target

definition and assessment procedures presented here or any

other assessment procedure.

5.2.3. Target distribution is not continuous

If the target distribution described by the PDF f(x) or an

approximation to it is not continuous, then it may not be possible

to guarantee that the a priori acceptance level and the probability

containedwithin a critical contour are equal. The same is true for

the distribution of standardized distances from a central value

described by the PDF fd(x) and the CDF Fd(x) that were used to

simplify the identification of the critical contours of f(x).

As implemented the empirical CDF F̂
dðdÞ was used to

approximate the CDF Fd(d) for the distribution of standardized

distances and to compute critical probabilities and distances.

The empirical CDF F̂
dðdÞ, being a step function, has a

discontinuity at each of the standardized distances computed

for the attribute vectors in the target data set. The impact of

using the empirical CDF F̂
dðdÞ to represent Fd(d) was evident

in the bootstrap evaluation results, where the mean acceptance
percentages were less than, but not significantly different from,

their respective acceptance levels, a direct consequence of

using the empirical CDF for the standardized distances and the

truncation rule used to obtain the critical distances.

The discrete nature of a sample of attribute vectors can

provide only an approximation to the actual attribute vector

distribution. The effects of the discrete sample may be

minimized by using a large target data set to improve the

resolution within the domain of the PDF or by using a more

sophisticated representation for the unknown PDF. For

example, if discrete jumps in the distance based cumulative

probability values are undesirable, a smooth approximation to

the CDF Fd(d) may be estimated and used instead to compute

the critical contours rather than using the empirical CDF F̂
dðdÞ

as was done here.

A lack of continuity in the PDF f(x) may also occur if there is

an attribute that takes on only a discrete set of values. If it makes

sense to compute an average value for the discrete values, then

they may be used with the target definition and assessment

procedures. For example, if the attribute is the number of trees

on a particular one hectare plot, which must be an integer, then

it may be used with the target definition and assessment

procedures since it makes sense to compute an average stand

density from a collection of 1 ha plots. If the attribute represents

a categorical variable such as vegetation class, e.g., overstory

tree, understory tree, etc., then it does not make sense to

compute an average value, and the attribute should not be used

with the target definition and assessment procedures.

5.2.4. Consistency and robustness

To gain some insight into the behavior of the target definition

and assessment procedures the three-dimensional target and

observation data sets used in the 50–50 split representative

sample evaluation and their associated assessment results are

considered in some detail. A plot of the observation and target

data sets is presented in Fig. 1 with an estimate of the target

mode, xc = [275.2, 52.1, 31.1]T, the central value used for the

assessments, indicated. Assessment results for the 95%, 90%,

80%, and 50% acceptance levels appear in Figs. 2–5,

respectively. As the acceptance level decreased, stands having

larger stand densities and smaller tree sizes relative to the mode

became unacceptable, as did stands having lower stand

densities and larger tree sizes. These stand structures were

furthest from the mode and were therefore less likely. Clearly

demonstrated in the figures is the inside/outside nature of the

assessment procedures when used in multiple dimensions.

The figures demonstrate the consistency of the nonpara-

metric target definition and assessment procedures for

decreasing acceptance levels when using the mode as the

central value. As the acceptance level decreases, the acceptance

region contracts about the mode, giving concentric subsets of

the points that were accepted for each smaller acceptance level.

The small standard deviations and the nearness of the mean

acceptance percentages to their respective acceptance levels in

the bootstrap evaluation results reinforce these consistency

results. The lack of significant differences between the

acceptance percentages and their respective acceptance levels
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Fig. 1. Observation and target data.
for both the bootstrap and 50–50 split representative sample

evaluations provides another indication of the consistency of

the target definition and assessment procedures.

The figures also show that the standardized distances

computed using the mode as the central value were indeed

closer to the mode and hence more acceptable than attribute

vectors having large standardized distances. Restrictive targets

produced by small acceptance levels identify the most likely

attribute vectors when the mode is used as the central value,

whether the distribution is symmetric or not. This implies that

the target definition and assessment procedures may be robust

to deviations from the symmetry assumption when an estimate

of the mode is used as the central value. This behavior is
Fig. 2. Assessment results showing the acceptable and unacceptable rip
desirable, but it may not occur if a value other than the mode is

used as the central value.

5.3. Future work, enhancements, and extensions

A number of enhancements to the target definition and

assessment procedures are possible. In particular, the proce-

dures used to compute standardized distances and critical

probabilities and distances may be improved. The improve-

ments would address performance issues as well as the

approximation to the CDF for the standardized distances from

the central value. Improving the performance of the procedures

will be particularly important when using the procedures with
arian stands for TPH, QMD, and H using a 95% acceptance level.
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Fig. 3. Assessment results showing the acceptable and unacceptable riparian stands for TPH, QMD, and H using a 90% acceptance level.
large target data sets or when there are a large number of

observations to be assessed. Improving the approximation to

the CDF, for example by providing a smooth curve rather than

the stair step function of the empirical CDF, would increase the

resolution available for computing the critical distance and

probability values for a particular target data set. Providing a

smoothed estimate of the CDF for the standardized distances

could also provide a significant reduction in the time necessary

to compute critical distances and probabilities.

A direct multidimensional nearest neighbor approximation

to the probability or likelihood contours of the distribution

represented by the target data set may also be possible. This

enhancement would permit the removal of the symmetry

assumption that is currently in place to permit distances from a
Fig. 4. Assessment results showing the acceptable and unacceptable rip
central value to be used instead of the actual attribute vector

distribution. Using an alternative to the distance based

likelihood approximation may also allow the use of multimodal

target distributions. The alternative procedures are more

computationally intensive than the current procedures but

could provide more accurate probability contours. Preliminary

investigation into this approach seems promising.

The target definition and assessment procedures may

possibly be extended for use with targets having multiple

modes. The fundamental idea is to think of a multimodal target

as a mixture distribution, f ðxÞ ¼
PNM

i¼1 ai fiðxÞ, where the

coefficients ai are weights giving the influence of each PDF

f i(x) in the mixture and
P

i¼1 ai ¼ 1, NM is the number of

modes, and each function fi(x) is itself a PDF (Silverman, 1986;
arian stands for TPH, QMD, and H using a 80% acceptance level.
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Fig. 5. Assessment results showing the acceptable and unacceptable riparian stands for TPH, QMD, and H using a 50% acceptance level.
Duda and Hart, 1973). Given estimates for the modes, critical

contours could be obtained by applying the described target

definition and assessment procedures independently for each

mode.

Using the target definition and assessment procedures with

independent sub-targets for each mode in a multimodal

distribution, however, does not address the distribution of

multiple desired forest structures across a landscape, or the

portion of a landscape that may be desired to be in each

structure. This is a more difficult problem and requires

knowledge of the proportional representation of the different

structures that is desired and the simultaneous consideration of

all desired structural targets within the context of a mixture

distribution (Silverman, 1986; Duda and Hart, 1973).

6. Conclusions

The target definition and assessment framework and the

nonparametric implementation described here may be used

within a regulatory context to quantitatively define forest

structure targets and to objectively assess the regulatory

compliance of forest management practices relative to the

targeted set of desirable forest structures. The selection of a

target data set and an acceptance level provide simultaneous

limits for the components of the attribute vectors based on an

approximation to the probability contours of their joint

distribution. The simultaneous identification of ranges for

the selected attributes should reduce the likelihood that

incompatible ranges become specified as a regulatory standard.

The target definition and assessment framework and

procedures may be used to automatically discriminate between

forested areas that are in agreement with the targeted forest

structures and those that are not. By automatically identifying

acceptable forestedareas, anopportunity formoreeffectiveuseof

scarce regulatory resources, suchas the ID teamsmandatedby the
FFR in western Washington State, becomes available, allowing

the regulatory agencies to focus their resources on forested areas

identified as marginal or unacceptable relative to the targeted

forest structures. Further, by quantifying a set of desirable forest

structures, the target definition and assessment framework and

procedures may be used to screen prospective management

strategies to identify those that are most likely to produce the

desirable structures, providing the potential for further relief to

regulatory agencies that provide review or monitoring of

management activities, as well as providing landowners the

flexibility to determine how to meet the regulatory objectives.

Effective target criteria must be representative of the desired

forest conditions, must be associated with data that are readily

obtained, must be easily computed, and must be easy to use

with an objective assessment procedure to determine whether

the desired forest management objectives have been achieved

for specific forest management situations. They must also allow

for the variability inherent in natural forest ecosystems, provide

for management flexibility in the attainment of the desired

conditions, and be biologically and statistically consistent to

ensure that the defined targets are relevant, representative of the

actual desired forest conditions, and achievable.

The target definition and assessment framework and the

nonparametric implementation of it described here automati-

cally take into account the inherent variability of the data and

are statistically and biologically consistent. The use of

quantitatively defined targets and objective assessment

procedures to identify desired forest structures and their use

in assessing management practices relative to the achievement

of those structures provides a robust approach to the problem

of identifying management strategies that are likely to produce

the desired forest conditions. The use of procedures like those

described here should help to enable scientists and policy

makers to identify regulatory targets for forest management that

are both achievable and beneficial.



K.R. Gehringer / Forest Ecology and Management 223 (2006) 125–138138
Acknowledgements

This work was funded by the Rural Technology Initiative

(RTI) in the College of Forest Resources at the University of

Washington, Seattle, WA and the Family Forest Foundation

(FFF), Chehalis, WA. I would like to thank Bruce Lippke and

Larry Mason at RTI and Tom Fox and Steve Stinson at the FFF

for their support of this work. I would also like to thank Kevin

Zobrist of RTI for his help reviewing multiple drafts of this

manuscript.

References

Beechie, T.J., Pess, G., Kennard, P., Bilby, R.E., Bolton, S., 2000. Modeling

recovery rates and pathways for woody debris recruitment in Northwestern

Washington streams. North Am. J. Fish. Manage. 20, 436–452.

Bilby, R.E., Ward, J.W., 1989. Changes in characteristics and function of woody

debris with increasing size of streams in western Washington. Trans. Am.

Fish. Soc. 118, 368–378.

Bilby, R.E., Ward, J.W., 1991. Characteristics and function of large woody

debris in streams draining old-growth, clear-cut, and second growth forests

in southwestern Washington. Can. J. Fish. Aquat. Sci. 48, 2499–2508.

Davison, A.C., Hinkley, D.V., 1997. Bootstrap Methods and their Application.

Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge

University Press (reprint with corrections edition, 2003).

Donnelly, D.M., 1997. Pacific Northwest Coast Variant of the Forest Vegetation

Simulator. WO-Forest Management Service Center, USDA-Forest Service,

Fort Collins, CO (available on the Web).

Duda, R.O., Hart, P.E., 1973. Pattern Classification and Scene Analysis. John

Wiley and Sons.

Efron, B., 1982. The jackknife, the bootstrap and other resampling plans. In:

CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 38.

SIAM.

Efron, B., Tibshirani, R.J., 1998. An Introduction to the Bootstrap. Monographs

on Statistics and Applied Probability, vol. 57. Chapman & Hall/CRC Press.

Ehlert, H., Mader, S., 2000. Review of the scientific foundations of the forests

and fish plan. Technical report, CH2M Hill, WA, Tel.: 1 425 453-5000.

Prepared for: Washington Forest Protection Association, 724 Columbia

Street, NW, Suite 250 Olympia, WA 98501.

Fairweather, S., 2001. Westside RMZs and the DFC model: documentation of

their conceptual and methodological development. Technical report,

Mason, Bruce, and Girard, Portland, Oregon. Prepared for RSAG – the

Riparian Scientific Advisory Group, and CMER – the Cooperative Mon-

itoring, Evaluation, and Research Committee, Olympia, Washington.

Forests and Fish Report, 1999. Technical report, Washington State Department

of Natural Resources.

Franklin, J.F., Spies, T.A., Van Pelt, R., Carey, A.B., Thornburgh, D.A., Berg,

D.R., Lindenmayer, D.B., Harmon, M.E., Keeton, W.S., Shaw, D.C., Bible,

K., Chen, J., 2002. Disturbances and structural development of natural

forest ecosystems with silvicultural implications using Douglas-fir as an

example. For. Ecol. Manage. 155, 399–423.

Gehringer, K.R., 1990. Nonparametric probability density estimation using

normalized B-splines. Master’s Thesis, The University of Tulsa, 1990.

Gehringer, K.R., Redner, R.A., 1992. Nonparametric probability density esti-

mation using normalized B-splines. Comm. Stat. Simul. Comput. 21 (3),

849–878.

Hann, D.W., Hester, A.S., Olsen, C.L., 1997. ORGANON User’s Manual, ed.

6.0. .

Hiserote, B., Waddell, K., 2004. The PNW–FIA Integrated Database User

Guide: A Database of Forest Inventory Information for California, Oregon

and Washington, 1.4 ed. Forest Inventory and Analysis Program, Pacific

Northwest Research Station, Portland, Oregon.
King, J.E., Site index curves of Douglas-fir in the Pacific Northwest. Number 8

in Weyerhaeuser Forestry Paper. Weyerhaeuser Company, July 1966.

Li, F., Zhang, L., Davis, C.C., 2002. Modeling the joint distribution of tree

diameters and heights by bivariate generalized beta distribution. For. Sci. 48

(1), 47–58.

Mardia, K.V., Kent, J.T., Bibby, J.M., 1979. Multivariate Analysis. Probability

and Mathematical Statistics. Academic Press.

McCarter, J.B., 2001. Landscape management system (LMS): background,

methods, and computer tools for integrating forest inventory, GIS, growth

and yield, visualization and analysis for sustaining multiple forest objec-

tives. Ph.D. Thesis. University of Washington, Seattle, Washington, 2001.

McCarter, J.B., Wilson, J.S., Baker, P.J., Moffett, J.L., Oliver, C.D., 1998.

Landscape management through integration of existing tools and emerging

technologies. J. For. 17–23.

Moffett, J., Ludwig, M., Lippke, B., 1998. Technical Analysis for the Desired

Future Condition Work Group. Draft, College of Forest Resources, Uni-

versity of Washington. Under contract to Washington Forest Protection

Association.

Oliver, C.D., Larson, B.C., 1996. Forest Stand Dynamics, update ed. John

Wiley and Sons.

Redner, R.A., 1999. Convergence rates for uniform B-spline density estimators.

I. One dimension. SIAM J. Set. Comput. 20 (6), 1929–1953 (electronic).

Redner, R.A., Gehringer, K., 1994. Function estimation using partitions of

unity. Comm. Stat. Theor. Meth. 23 (7), 2059–2078.

Robison, E.G., Beschta, R.L., 1990. Identifying trees in riparian areas that can

provide coarse woody debris to streams. For. Sci. 36 (3), 790–801.

Schreuder, H.T., Hafley, W.L., 1977. A useful bivariate distribution for describ-

ing stand structure of tree heights and diameters. Biometrics 33 (3), 471–

478.

Silverman, B.W., 1986. Density Estimation for Statistics and Data Analysis.

Monographs on Statistics and Applied Probability, vol. 26. Chapman &

Hall/CRC Press.

Thompson, J.R., 2000. Simulation: A Modeler’s Approach. Wiley Series in

Probability and Statistics. John Wiley and Sons.

Thompson, J.R., Tapia, R.A., 1990. Nonparametric Function Estimation,

Modelling and Simulation. SIAM.

Vanclay, J.K., 1994. Modelling Forest Growth and Yield: Applications toMixed

Tropical Forests. CAB International.

Welty, J.J., Beechie, T., Sullivan, K., Hyink, D.M., Bilby, R.E., Andrus, C., Pess,

G., 2002. Riparian aquatic interaction simulator (RAIS): a model of riparian

forest dynamics for the generation of large woody debris and shade. For.

Ecol. Manage. 162, 299–318.

WFPB, 2001. Forest Practices Rule Book. Washington Forest Practices Board,

Washington Department of Natural Resources, Forest Practices Division,

Olympia, Washington.

Woudenberg, S.W., Farrenkopf, T.O., 1995. The Westwide Forest Inventory

Data Base: User’s Manual. INT GTR-317. USDA Forest Service, Inter-

mountain Research Station.

Zar, J.H., 1996. Biostatistical Analysis, 3rd ed. Prentice-Hall.

Zobrist, K., 2003. Economic Impacts of the Forests and Fish Rules on Small

NIPF Landowners: Ten Western Washington Case Studies. RTI Working

Paper 1, Revised ed. Rural Technology Initiative, University of Washing-

ton, Seattle, WA.

Zobrist, K., Lippke, B.R., 2003. Case studies examining the economic impacts

of new forest practices regulations on NIPF landowners. In: Teeter, L.,

Cashore, B., Zhang, D. (Eds.), Forest Policy for Private Forestry: Global

and Regional Challenges. CABI Publishing, Wallingford, UK.

Zobrist, K.W., Gehringer, K.R., Lippke, B.R., 2004. Templates for sustainable

riparian management on family forest ownerships. J. For. 102 (7), 19–

25.

Zobrist, K.W., Gehringer, K.R., Lippke, B.R., 2005. A sustainable solution for

riparian management. In: Deal, R.L., White, S.M. (Eds.), Understanding

Key Issues of Sustainable Wood Production in the Pacific Northwest,

General Technical Report PNW-GTR-626. USDA Forest Service, Pacific

Northwest Research Station, Portland, OR.


	Structure-based nonparametric target definition and assessment �procedures with an application to riparian forest management
	Introduction
	Overview of the forests and fish rules (FFR)
	Forest structure, target definition, and assessment
	Representing the distribution of desirable forest structures
	Objectives and application

	Methods
	Target definition and assessment procedures
	Implementation

	Application
	Bootstrap evaluation
	50-50 split representative target evaluation
	Data description
	Data for the bootstrap evaluation
	Data for the 50-50 split representative target evaluation


	Results
	Discussion
	Target definition and assessment evaluation
	Deviations from the assumptions
	Target distribution is not unimodal
	Target distribution is not symmetric
	Target distribution is not continuous
	Consistency and robustness

	Future work, enhancements, and extensions

	Conclusions
	Acknowledgements
	References


